Ba7Nb4−xCexMoO20: structural and electrical property studies of a novel NTC thermal ceramic

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Chemistry C Pub Date : 2024-10-21 DOI:10.1039/D4TC03449J
Jinyang Li, Wenye Deng, Yan Xue, Ni Ai, Kai Ding, Xianghui Chen, Weiwei Meng, Pengjun Zhao, Aimin Chang and Yongxin Xie
{"title":"Ba7Nb4−xCexMoO20: structural and electrical property studies of a novel NTC thermal ceramic","authors":"Jinyang Li, Wenye Deng, Yan Xue, Ni Ai, Kai Ding, Xianghui Chen, Weiwei Meng, Pengjun Zhao, Aimin Chang and Yongxin Xie","doi":"10.1039/D4TC03449J","DOIUrl":null,"url":null,"abstract":"<p >The hexagonal perovskite oxide Ba<small><sub>7</sub></small>Nb<small><sub>4</sub></small>MoO<small><sub>20</sub></small> is widely studied in chemical devices due to its oxide-ionic conductivity at high temperatures. Ce<small><sup>4+</sup></small> doping into Ba<small><sub>7</sub></small>Nb<small><sub>4</sub></small>MoO<small><sub>20</sub></small> was undertaken to optimize small polariton conduction and oxide ionic conductivity simultaneously. Ba<small><sub>7</sub></small>Nb<small><sub>4−<em>x</em></sub></small>Ce<small><sub><em>x</em></sub></small>MoO<small><sub>20</sub></small> materials were synthesized <em>via</em> solid phase sintering. XRD patterns indicate a single phase, SEM scans reveal increased densification with higher Ce doping concentrations, and the resistance temperature range expands from 400–900 °C to 300–1100 °C. Hall tests confirm that Ba<small><sub>7</sub></small>Nb<small><sub>4−<em>x</em></sub></small>Ce<small><sub><em>x</em></sub></small>MoO<small><sub>20</sub></small> carriers are electrons, indicating n-type conductivity. Nyquist plots illustrate that grain boundary resistance governs complex impedance, which shows gradual oxide ionic conductivity enhancement with rising temperature. The aging drift rate decreases to about 1%, suggesting good stability of Ba<small><sub>7</sub></small>Nb<small><sub>4−<em>x</em></sub></small>Ce<small><sub><em>x</em></sub></small>MoO<small><sub>20</sub></small> ceramics. These findings propose a feasible doping strategy for enhancing hexagonal perovskite oxide ceramics.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 46","pages":" 18819-18828"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03449j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The hexagonal perovskite oxide Ba7Nb4MoO20 is widely studied in chemical devices due to its oxide-ionic conductivity at high temperatures. Ce4+ doping into Ba7Nb4MoO20 was undertaken to optimize small polariton conduction and oxide ionic conductivity simultaneously. Ba7Nb4−xCexMoO20 materials were synthesized via solid phase sintering. XRD patterns indicate a single phase, SEM scans reveal increased densification with higher Ce doping concentrations, and the resistance temperature range expands from 400–900 °C to 300–1100 °C. Hall tests confirm that Ba7Nb4−xCexMoO20 carriers are electrons, indicating n-type conductivity. Nyquist plots illustrate that grain boundary resistance governs complex impedance, which shows gradual oxide ionic conductivity enhancement with rising temperature. The aging drift rate decreases to about 1%, suggesting good stability of Ba7Nb4−xCexMoO20 ceramics. These findings propose a feasible doping strategy for enhancing hexagonal perovskite oxide ceramics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ba7Nb4-xCexMoO20:新型 NTC 热敏陶瓷的结构和电气性能研究
六方包晶氧化物 Ba7Nb4MoO20 因其在高温下的氧化物离子导电性而在化学装置中被广泛研究。在 Ba7Nb4MoO20 中掺入 Ce4+ 可同时优化小极化子传导性和氧化物离子传导性。Ba7Nb4-xCexMoO20 材料是通过固相烧结法合成的。XRD 图谱显示出单相,SEM 扫描显示出随着 Ce 掺杂浓度的增加,致密化程度提高,电阻温度范围从 400-900 °C 扩大到 300-1100°C。霍尔测试证实 Ba7Nb4-xCexMoO20 载流子为电子,表明其具有 n 型导电性。奈奎斯特图表明,晶界电阻控制着复合阻抗,随着温度的升高,氧化物离子导电性逐渐增强。老化漂移率降至约 1%,表明 Ba7Nb4-xCexMoO20 陶瓷具有良好的稳定性。这些发现为增强六方包晶氧化物陶瓷提出了一种可行的掺杂策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
期刊最新文献
Back cover Back cover Advanced functional inorganic materials for information technology and applications Back cover Quantum transport simulation of α-GeTe ferroelectric semiconductor transistors†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1