Zheng Qin, Xiufan Li, Yang Zhou, Shikun Zhang, Rui Li, Chunxiao Du, Zhisong Xiao
{"title":"Emerging applications of measurement-based quantum computing","authors":"Zheng Qin, Xiufan Li, Yang Zhou, Shikun Zhang, Rui Li, Chunxiao Du, Zhisong Xiao","doi":"10.1007/s11128-024-04596-3","DOIUrl":null,"url":null,"abstract":"<div><p>The measurement-based quantum computing (MBQC) is another universal quantum computing model, different from the conventional quantum circuit model. MBQC employs measurements on designated qubits in entangled states to perform universal computation. As theoretical research and experimental techniques advance in recent years, applications grounded in MBQC have progressively emerged. This article endeavors to encapsulate the nascent application domains of MBQC. We start with a brief introduction to the fundamental principles of the model with an emphasis on the comparison between MBQC and circuit-based quantum computing (CBQC). Then, the unique advantages of MBQC are highlighted, such as an explicit and intuitive physical intention, robust algorithm construction, superior single-qubit quantum measurement fidelity, efficient information flow transmission, and so on. Based on these merits, we next introduce the gradually emerging applications of MBQC in diverse areas, representatively including quantum algorithms and quantum networks. In the end, we present an overview of the up-to-date state of software and hardware infrastructure that supports applied research. We hope this review could be useful to people unfamiliar with the field and can also serve as a reference for those within it.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04596-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The measurement-based quantum computing (MBQC) is another universal quantum computing model, different from the conventional quantum circuit model. MBQC employs measurements on designated qubits in entangled states to perform universal computation. As theoretical research and experimental techniques advance in recent years, applications grounded in MBQC have progressively emerged. This article endeavors to encapsulate the nascent application domains of MBQC. We start with a brief introduction to the fundamental principles of the model with an emphasis on the comparison between MBQC and circuit-based quantum computing (CBQC). Then, the unique advantages of MBQC are highlighted, such as an explicit and intuitive physical intention, robust algorithm construction, superior single-qubit quantum measurement fidelity, efficient information flow transmission, and so on. Based on these merits, we next introduce the gradually emerging applications of MBQC in diverse areas, representatively including quantum algorithms and quantum networks. In the end, we present an overview of the up-to-date state of software and hardware infrastructure that supports applied research. We hope this review could be useful to people unfamiliar with the field and can also serve as a reference for those within it.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.