Estimation of Effective Temperature-Dependent Thermal Properties of Glass Fiber-Reinforced Polymer for Air‐Core Reactor Insulation: A Case Study Using an Alternative Inverse Approach
Mariana de Melo Antunes, Nícolas Pinheiro Ramos, Luiz Augusto Pereira de Abreu, Hugo Barbosa Faco, Sandro Metrevelle Marcondes de Lima e Silva
{"title":"Estimation of Effective Temperature-Dependent Thermal Properties of Glass Fiber-Reinforced Polymer for Air‐Core Reactor Insulation: A Case Study Using an Alternative Inverse Approach","authors":"Mariana de Melo Antunes, Nícolas Pinheiro Ramos, Luiz Augusto Pereira de Abreu, Hugo Barbosa Faco, Sandro Metrevelle Marcondes de Lima e Silva","doi":"10.1007/s10765-024-03468-3","DOIUrl":null,"url":null,"abstract":"<div><p>Fiber-reinforced polymers are crucial for insulating electrical equipment, necessitating accurate thermal property data for an effective thermal analysis. This case study uses a cost-effective method to thermally characterize a glass fiber-reinforced epoxy resin used in air-core reactor insulation. The approach simultaneously estimates temperature-dependent thermal conductivity (<i>k</i>) and specific heat (<i>c</i><sub><i>p</i></sub>) for class H/180 insulation. By analyzing transient heat conduction in a 3D composite sample under vacuum and at various temperatures, the method optimizes sensor placement, enabling accurate property estimation with a single thermocouple. The estimated through-thickness thermal conductivity at room temperature deviates by less than 6% from standard guarded hot plate measurements. The method’s reliability is confirmed by accurately retrieving the applied heat flux using the estimated properties and measured temperature data. The results are valuable for designing accurate simulation models to predict and manage the thermal behavior of air-core reactors, as implemented by GE Grid Solutions in Itajubá, Brazil.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 12","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03468-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fiber-reinforced polymers are crucial for insulating electrical equipment, necessitating accurate thermal property data for an effective thermal analysis. This case study uses a cost-effective method to thermally characterize a glass fiber-reinforced epoxy resin used in air-core reactor insulation. The approach simultaneously estimates temperature-dependent thermal conductivity (k) and specific heat (cp) for class H/180 insulation. By analyzing transient heat conduction in a 3D composite sample under vacuum and at various temperatures, the method optimizes sensor placement, enabling accurate property estimation with a single thermocouple. The estimated through-thickness thermal conductivity at room temperature deviates by less than 6% from standard guarded hot plate measurements. The method’s reliability is confirmed by accurately retrieving the applied heat flux using the estimated properties and measured temperature data. The results are valuable for designing accurate simulation models to predict and manage the thermal behavior of air-core reactors, as implemented by GE Grid Solutions in Itajubá, Brazil.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.