Broadband plasmonic response of silver nanomaze-based nanogap-enhanced absorber

IF 1.7 4区 化学 Bulletin of the Korean Chemical Society Pub Date : 2024-11-21 DOI:10.1002/bkcs.12904
Kinam Jung, Yongtaek Lee
{"title":"Broadband plasmonic response of silver nanomaze-based nanogap-enhanced absorber","authors":"Kinam Jung,&nbsp;Yongtaek Lee","doi":"10.1002/bkcs.12904","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a novel nanogap-enhanced plasmonic absorber (NEPA) structure generated using the Gray–Scott algorithm. Finite-difference time-domain simulations analyzed NEPA's optical properties, varying top pattern thickness from 10 to 300 nm. The simulation results demonstrate exceptional broadband absorption, with rates exceeding 60% across the 90–300 nm thickness range and reaching a peak of 96.73% at 160 nm. The nanogap-mediated plasmonic nanomaze array exhibits multiple resonance features and complex electric field distributions due to various plasmonic modes. The nearly uniform spacing of the nanomaze pattern maintains consistent plasmonic properties. This innovative approach shows great potential for enhancing plasmonic devices, with applications in solar cells, photodetectors, surface-enhanced Raman spectroscopy, metamaterials, imaging, energy harvesting, and nanoantennas. Our research advances nanophotonics, offering new possibilities for high-efficiency optical and optoelectronic devices across various applications.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"45 11","pages":"906-910"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bkcs.12904","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.12904","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel nanogap-enhanced plasmonic absorber (NEPA) structure generated using the Gray–Scott algorithm. Finite-difference time-domain simulations analyzed NEPA's optical properties, varying top pattern thickness from 10 to 300 nm. The simulation results demonstrate exceptional broadband absorption, with rates exceeding 60% across the 90–300 nm thickness range and reaching a peak of 96.73% at 160 nm. The nanogap-mediated plasmonic nanomaze array exhibits multiple resonance features and complex electric field distributions due to various plasmonic modes. The nearly uniform spacing of the nanomaze pattern maintains consistent plasmonic properties. This innovative approach shows great potential for enhancing plasmonic devices, with applications in solar cells, photodetectors, surface-enhanced Raman spectroscopy, metamaterials, imaging, energy harvesting, and nanoantennas. Our research advances nanophotonics, offering new possibilities for high-efficiency optical and optoelectronic devices across various applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于银纳米aze的纳米间隙增强吸收器的宽带等离子响应
本研究介绍了一种利用 Gray-Scott 算法生成的新型纳米间隙增强等离子体吸收器(NEPA)结构。有限差分时域仿真分析了 NEPA 的光学特性,顶层图案厚度从 10 纳米到 300 纳米不等。模拟结果表明,NEPA 具有优异的宽带吸收性能,在 90-300 纳米厚度范围内的吸收率超过 60%,在 160 纳米处达到 96.73% 的峰值。纳米间隙介导的等离子纳米迷宫阵列由于采用了各种等离子模式,表现出多种共振特征和复杂的电场分布。纳米迷宫图案近乎均匀的间距保持了一致的等离子特性。这种创新方法显示出增强等离子器件的巨大潜力,可应用于太阳能电池、光电探测器、表面增强拉曼光谱、超材料、成像、能量收集和纳米天线。我们的研究推动了纳米光子学的发展,为各种应用领域的高效光学和光电设备提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of the Korean Chemical Society
Bulletin of the Korean Chemical Society Chemistry-General Chemistry
自引率
23.50%
发文量
182
期刊介绍: The Bulletin of the Korean Chemical Society is an official research journal of the Korean Chemical Society. It was founded in 1980 and reaches out to the chemical community worldwide. It is strictly peer-reviewed and welcomes Accounts, Communications, Articles, and Notes written in English. The scope of the journal covers all major areas of chemistry: analytical chemistry, electrochemistry, industrial chemistry, inorganic chemistry, life-science chemistry, macromolecular chemistry, organic synthesis, non-synthetic organic chemistry, physical chemistry, and materials chemistry.
期刊最新文献
Masthead Cover Picture: Enhanced signal to noise ratio of single entity electrochemistry signal of platinum nanoparticles using passive silver ultramicroelectrode (BKCS 11/2024) Seongkyeong Yoon, Jaedo Na, Sun Gyu Moon, Heewon Kim, Ki Jun Kim, Seong Jung Kwon Broadband plasmonic response of silver nanomaze-based nanogap-enhanced absorber Comparison of oxygen evolution reaction performance for Ni and Co using isostructural trans-cinnamate complexes Study of functional lipid nanoparticles for mRNA delivery using new ionizable tocopherol derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1