{"title":"S-2DV: A New Reduced Model Generating Submesoscale-Like Flows","authors":"Krithin Gowthaman, Jim Thomas","doi":"10.1029/2024MS004438","DOIUrl":null,"url":null,"abstract":"<p>Oceanic mesoscale flows are characterized by an inverse kinetic energy cascade and the subsequent formation of large coherent vortices, and these flow features are captured well by the quasi-geostrophic (QG) model. Oceanic submesoscale flow dynamics are however significantly different from those of mesoscales. The increase in unbalanced energy levels and the Rossby number at submesoscales results in cyclone-anticyclone asymmetry in vorticity structures, forward kinetic energy cascades, and enhanced small-scale dissipation. In this paper, we develop a reduced single-equation model that can generate submesoscale-like flows in two dimensions. We start from the two-dimensional barotropic QG equation and add an external random vorticity field, to mimic the effect of unbalanced flow components. Thereafter, we add a vorticity-squared term, to generate asymmetry in the vorticity structures. By varying the strength of these two terms, we observe that the model can generate submesoscale-like flows that compare qualitatively well with realistic flows generated by complex ocean models. The reduced model is seen to be capable of generating flows that are intermittent in nature, are characterized by a forward energy flux, and are composed of small-scale flow structures along with enhanced energy dissipation. We further demonstrate the practical utility of the model by applying it to a passive tracer dispersion and a plankton patchiness problem, these being applications that require submesoscale-like flows. Our investigation points out that the new model could serve as a convenient platform for various applications that require submesoscale-like flows, such as testing and developing different kinds of parameterizations.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004438","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004438","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Oceanic mesoscale flows are characterized by an inverse kinetic energy cascade and the subsequent formation of large coherent vortices, and these flow features are captured well by the quasi-geostrophic (QG) model. Oceanic submesoscale flow dynamics are however significantly different from those of mesoscales. The increase in unbalanced energy levels and the Rossby number at submesoscales results in cyclone-anticyclone asymmetry in vorticity structures, forward kinetic energy cascades, and enhanced small-scale dissipation. In this paper, we develop a reduced single-equation model that can generate submesoscale-like flows in two dimensions. We start from the two-dimensional barotropic QG equation and add an external random vorticity field, to mimic the effect of unbalanced flow components. Thereafter, we add a vorticity-squared term, to generate asymmetry in the vorticity structures. By varying the strength of these two terms, we observe that the model can generate submesoscale-like flows that compare qualitatively well with realistic flows generated by complex ocean models. The reduced model is seen to be capable of generating flows that are intermittent in nature, are characterized by a forward energy flux, and are composed of small-scale flow structures along with enhanced energy dissipation. We further demonstrate the practical utility of the model by applying it to a passive tracer dispersion and a plankton patchiness problem, these being applications that require submesoscale-like flows. Our investigation points out that the new model could serve as a convenient platform for various applications that require submesoscale-like flows, such as testing and developing different kinds of parameterizations.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.