{"title":"State geometric adjustability for interval max-plus linear systems","authors":"Yingxuan Yin, Haiyong Chen, Yuegang Tao","doi":"10.1049/cth2.12752","DOIUrl":null,"url":null,"abstract":"<p>This article investigates the state geometric adjustability for interval max-plus linear systems, which means that the state vector sequence is transformed into a geometric vector sequence by using the state feedback control. It is pointed out that the geometric state vector sequence and its common ratio are closely related to the eigenvectors and eigenvalues of the special interval state matrix, respectively. Such an interval state matrix is determined by the eigen-robust interval matrix, which has a universal eigenvector relative to a universal eigenvalue. The state geometric adjustability is characterized by the solvability of interval max-plus linear equations, and a necessary and sufficient condition for the adjustability is given. A polynomial algorithm is provided to find the state feedback matrix. Several numerical examples and simulations are presented to demonstrate the results. At the same time, the proposed method is applied for the regulation of battery energy storage systems to optimize the start time of executing tasks for all processing units in each activity.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 17","pages":"2468-2481"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12752","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12752","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates the state geometric adjustability for interval max-plus linear systems, which means that the state vector sequence is transformed into a geometric vector sequence by using the state feedback control. It is pointed out that the geometric state vector sequence and its common ratio are closely related to the eigenvectors and eigenvalues of the special interval state matrix, respectively. Such an interval state matrix is determined by the eigen-robust interval matrix, which has a universal eigenvector relative to a universal eigenvalue. The state geometric adjustability is characterized by the solvability of interval max-plus linear equations, and a necessary and sufficient condition for the adjustability is given. A polynomial algorithm is provided to find the state feedback matrix. Several numerical examples and simulations are presented to demonstrate the results. At the same time, the proposed method is applied for the regulation of battery energy storage systems to optimize the start time of executing tasks for all processing units in each activity.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.