One-Step Synthesis for Orn-Val with High Molecular Weight and Low Polydispersity by Ugi Four-Component Condensation.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-11-27 DOI:10.1021/acsbiomaterials.4c01379
Junhui Ma, Nan Ma, Jun Liu, Qiongqiong Zhu, Yan Tang, Lei Wang, Yan Yan, Ting Yue, Meiyu Shao, Wei Zhang
{"title":"One-Step Synthesis for Orn-Val with High Molecular Weight and Low Polydispersity by Ugi Four-Component Condensation.","authors":"Junhui Ma, Nan Ma, Jun Liu, Qiongqiong Zhu, Yan Tang, Lei Wang, Yan Yan, Ting Yue, Meiyu Shao, Wei Zhang","doi":"10.1021/acsbiomaterials.4c01379","DOIUrl":null,"url":null,"abstract":"<p><p>Basic amino acid alternating copolymers exhibit exceptional antimicrobial properties and biosafety, yet their application is restricted by the complexity of the synthesis process and low molecular weight (<i>M</i><sub>n</sub> = 1000). In this study, we synthesized a basic amino acid alternating copolymer (Orn-Val) in only one step by the Ugi four-component condensation (Ugi'4CC), achieving high molecular weight (<i>M</i><sub>n</sub> = 20,000) and narrow polydispersity (PDI ≤ 1.10). Furthermore, we observed that factors such as the feed ratio, reaction solvent, and pH significantly influenced the molecular weight and polydispersity of MPE-Orn-Val-Cbz. Moreover, the structure of potassium isocyanate also significantly affected the molecular weight and polydispersity of the products. And it was also demonstrated that the obtained Orn-Val demonstrated excellent antimicrobial properties and biocompatibility. Therefore, this method effectively addresses the limitations associated with the complex synthesis process and low molecular weight of amino acid alternating copolymers.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01379","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Basic amino acid alternating copolymers exhibit exceptional antimicrobial properties and biosafety, yet their application is restricted by the complexity of the synthesis process and low molecular weight (Mn = 1000). In this study, we synthesized a basic amino acid alternating copolymer (Orn-Val) in only one step by the Ugi four-component condensation (Ugi'4CC), achieving high molecular weight (Mn = 20,000) and narrow polydispersity (PDI ≤ 1.10). Furthermore, we observed that factors such as the feed ratio, reaction solvent, and pH significantly influenced the molecular weight and polydispersity of MPE-Orn-Val-Cbz. Moreover, the structure of potassium isocyanate also significantly affected the molecular weight and polydispersity of the products. And it was also demonstrated that the obtained Orn-Val demonstrated excellent antimicrobial properties and biocompatibility. Therefore, this method effectively addresses the limitations associated with the complex synthesis process and low molecular weight of amino acid alternating copolymers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 Ugi 四组份缩合一步合成高分子量、低多分散性的 Orn-Val。
碱性氨基酸交替共聚物具有优异的抗菌性能和生物安全性,但其应用却受到合成工艺复杂和分子量低(Mn = 1000)的限制。在本研究中,我们通过 Ugi 四组份缩合(Ugi'4CC)法仅用一步就合成了碱性氨基酸交替共聚物(Orn-Val),实现了高分子量(Mn = 20,000)和窄多分散性(PDI ≤ 1.10)。此外,我们还观察到进料比、反应溶剂和 pH 值等因素对 MPE-Orn-Val-Cbz 的分子量和聚分散性有显著影响。此外,异氰酸钾的结构也对产物的分子量和多分散性有很大影响。实验还证明,所获得的 Orn-Val 具有优异的抗菌性和生物相容性。因此,该方法有效地解决了氨基酸交替共聚物合成工艺复杂和分子量低的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Stochastic to Deterministic: A Straightforward Approach to Create Serially Perfusable Multiscale Capillary Beds. Innervated Coculture Device to Model Peripheral Nerve-Mediated Fibroblast Activation. One-Step Synthesis for Orn-Val with High Molecular Weight and Low Polydispersity by Ugi Four-Component Condensation. α-Ketoglutaric Acid Reprograms Macrophages by Altering Energy Metabolism to Promote the Regeneration of Small-Diameter Vascular Grafts. Mechanical and Physical Characterization of a Biphasic 3D Printed Silk-Infilled Scaffold for Osteochondral Tissue Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1