{"title":"C-terminal tagging enhances the detection sensitivity of interlekin receptor type 1.","authors":"Ayuko Moriyama, Saya Imaoka, Tsuyoshi Sasagawa, Machi Hosaka, Isao Kato, Hiroki Tamura, Rie Takeuchi, Mariko Tsunoda, Masatake Asano","doi":"10.14715/cmb/2024.70.10.7","DOIUrl":null,"url":null,"abstract":"<p><p>Substances released outside of the cells during cell necrosis are collectively called danger-associated molecular patterns (DAMPS) or alarmins. A pro-inflammatory cytokine, interleukin-1α (IL-1α) is known as a typical alarmin. IL-1α transmits signals by binding to IL-1 receptor 1 (IL-1R1), type I protein, expressed on the cell membrane of target cells, but detection of IL-1R1 at the protein and mRNA levels is difficult. Although the reasons are not elucidated, we attempted to add the HiBiT-tag to the N-terminus (N'-R1) or C-terminus (C'-R1) of IL-1R1 to examine whether the detection sensitivity can be augmented. Increase in detection sensitivity will allow the investigation of its function and subcellular localization much further. Using uterine cervical cancer-derived HeLa cells and its derivative CR-R1-4 cells lacking IL-1R1, C'-R1 was demonstrated to significantly increase the detection sensitivity of IL-1R1. Furthermore, the signal transduction function of neither N'-R1 nor C'-R1 was affected. Immunofluorescence cell staining revealed that wild-type IL-1R1 is mainly localized in the nucleus, whereas C'-R1 is localized both in the nucleus and the cytoplasm. The above results showed that adding a tag to the C-terminus of IL-1R1 increases detection sensitivity while maintaining its function. In the future, we would like to further investigate the relationship between changes in the intracellular localization of C'-R1 and increases in detection sensitivity.</p>","PeriodicalId":9802,"journal":{"name":"Cellular and molecular biology","volume":"70 10","pages":"43-48"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14715/cmb/2024.70.10.7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Substances released outside of the cells during cell necrosis are collectively called danger-associated molecular patterns (DAMPS) or alarmins. A pro-inflammatory cytokine, interleukin-1α (IL-1α) is known as a typical alarmin. IL-1α transmits signals by binding to IL-1 receptor 1 (IL-1R1), type I protein, expressed on the cell membrane of target cells, but detection of IL-1R1 at the protein and mRNA levels is difficult. Although the reasons are not elucidated, we attempted to add the HiBiT-tag to the N-terminus (N'-R1) or C-terminus (C'-R1) of IL-1R1 to examine whether the detection sensitivity can be augmented. Increase in detection sensitivity will allow the investigation of its function and subcellular localization much further. Using uterine cervical cancer-derived HeLa cells and its derivative CR-R1-4 cells lacking IL-1R1, C'-R1 was demonstrated to significantly increase the detection sensitivity of IL-1R1. Furthermore, the signal transduction function of neither N'-R1 nor C'-R1 was affected. Immunofluorescence cell staining revealed that wild-type IL-1R1 is mainly localized in the nucleus, whereas C'-R1 is localized both in the nucleus and the cytoplasm. The above results showed that adding a tag to the C-terminus of IL-1R1 increases detection sensitivity while maintaining its function. In the future, we would like to further investigate the relationship between changes in the intracellular localization of C'-R1 and increases in detection sensitivity.
期刊介绍:
Cellular and Molecular Biology publishes original articles, reviews, short communications, methods, meta-analysis notes, letters to editor and comments in the interdisciplinary science of Cellular and Molecular Biology linking and integrating molecular biology, biophysics, biochemistry, enzymology, physiology and biotechnology in a dynamic cell and tissue biology environment, applied to human, animals, plants tissues as well to microbial and viral cells. The journal Cellular and Molecular Biology is therefore open to intense interdisciplinary exchanges in medical, dental, veterinary, pharmacological, botanical and biological researches for the demonstration of these multiple links.