Defective Hippocampal Primary Ciliary Function and Aberrant LKB1/AMPK Signaling Pathway Are Associated With the Inhibition of Autophagic Activity in Offspring Born to Mothers of Advanced Maternal Age
Ziyao Han, Xiaoyue Yang, Jianxiong Gui, Hanyu Luo, Dishu Huang, Hengsheng Chen, Li Cheng, Ping Yuan, Li Jiang
{"title":"Defective Hippocampal Primary Ciliary Function and Aberrant LKB1/AMPK Signaling Pathway Are Associated With the Inhibition of Autophagic Activity in Offspring Born to Mothers of Advanced Maternal Age","authors":"Ziyao Han, Xiaoyue Yang, Jianxiong Gui, Hanyu Luo, Dishu Huang, Hengsheng Chen, Li Cheng, Ping Yuan, Li Jiang","doi":"10.1002/dneu.22954","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Advanced maternal age (AMA) negatively influences the development and cognitive functions of offspring. However, the underlying mechanism remains to be elucidated. As hippocampal autophagy and primary cilia play a crucial role in learning and memory abilities, this study aimed to investigate the effects of AMA on hippocampal autophagy and primary cilia, and to explore their relationship with the changes of LKB1/AMPK signaling pathway in offspring rats. The whole brains and hippocampus of offspring born to 12-month-old (AMA) and 3-month-old (control) Sprague–Dawley (SD) female rats were collected on post-natal days (P) 14, 28, and 60. Transmission electron microscopy was employed to count the number of autophagosomes. The quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting were used to quantify gene expression, and immunofluorescence was used to measure primary cilia. The results revealed that autophagic activity was inhibited from childhood to adulthood in the AMA group. Furthermore, in the early developmental stage, primary ciliogenesis and growth in the hippocampus in the AMA group were impaired, with astrocytes being more severely affected. In addition, the AMA group exhibited an abnormal activation of the LKB1/AMPK signaling pathway. Thus, in offspring born to mothers of AMA, impaired hippocampal primary ciliary function and aberrant activation of the LKB1/AMPK signaling pathway are associated with inhibited autophagic activity.</p>\n </div>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"85 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22954","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced maternal age (AMA) negatively influences the development and cognitive functions of offspring. However, the underlying mechanism remains to be elucidated. As hippocampal autophagy and primary cilia play a crucial role in learning and memory abilities, this study aimed to investigate the effects of AMA on hippocampal autophagy and primary cilia, and to explore their relationship with the changes of LKB1/AMPK signaling pathway in offspring rats. The whole brains and hippocampus of offspring born to 12-month-old (AMA) and 3-month-old (control) Sprague–Dawley (SD) female rats were collected on post-natal days (P) 14, 28, and 60. Transmission electron microscopy was employed to count the number of autophagosomes. The quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting were used to quantify gene expression, and immunofluorescence was used to measure primary cilia. The results revealed that autophagic activity was inhibited from childhood to adulthood in the AMA group. Furthermore, in the early developmental stage, primary ciliogenesis and growth in the hippocampus in the AMA group were impaired, with astrocytes being more severely affected. In addition, the AMA group exhibited an abnormal activation of the LKB1/AMPK signaling pathway. Thus, in offspring born to mothers of AMA, impaired hippocampal primary ciliary function and aberrant activation of the LKB1/AMPK signaling pathway are associated with inhibited autophagic activity.
期刊介绍:
Developmental Neurobiology (previously the Journal of Neurobiology ) publishes original research articles on development, regeneration, repair and plasticity of the nervous system and on the ontogeny of behavior. High quality contributions in these areas are solicited, with an emphasis on experimental as opposed to purely descriptive work. The Journal also will consider manuscripts reporting novel approaches and techniques for the study of the development of the nervous system as well as occasional special issues on topics of significant current interest. We welcome suggestions on possible topics from our readers.