Mohaddeseh Ghorbani Shiraz, Janni Nielsen, Jeremias Widmann, Ka Hang Karen Chung, Thomas Paul Davis, Casper Rasmussen, Carsten Scavenius, Jan J Enghild, Camille Martin-Gallausiaux, Yogesh Singh, Ibrahim Javed, Daniel E Otzen
{"title":"Young rat microbiota extracts strongly inhibit fibrillation of α-synuclein and protect neuroblastoma cells and zebrafish against α-synuclein toxicity.","authors":"Mohaddeseh Ghorbani Shiraz, Janni Nielsen, Jeremias Widmann, Ka Hang Karen Chung, Thomas Paul Davis, Casper Rasmussen, Carsten Scavenius, Jan J Enghild, Camille Martin-Gallausiaux, Yogesh Singh, Ibrahim Javed, Daniel E Otzen","doi":"10.1016/j.mocell.2024.100161","DOIUrl":null,"url":null,"abstract":"<p><p>The clinical manifestations of Parkinson's Disease (PD) are driven by aggregation of α-Synuclein (α-Syn) in the brain. However, there is increasing evidence that PD may be initiated in the gut and thence spread to the brain, e.g. via the vagus nerve. Many studies link PD to changes in the gut microbiome, and bacterial amyloid has been shown to stimulate α-syn aggregation. Yet we are not aware of any studies reporting on a direct connection between microbiome components and α-Syn aggregation. Here we report that soluble extract from the gut microbiome of the rats, particularly young rats transgenic for PD, show a remarkably strong ability to inhibit in vitro α-Syn aggregation and keep it natively unfolded and monomeric. The active component(s) are heat-labile molecule(s) of around 30-100 kDa size which are neither nucleic acid nor lipid. Proteomic analysis identified several proteins whose concentrations in different rat samples correlated with the samples' anti-inhibitory activity, while a subsequent pulldown assay linked the protein chaperone DnaK with the inhibitory activity of young rat's microbiome, confirmed in subsequent in vitro assays. Remarkably, the microbiome extracts also protected neuroblastoma SH-SY5Y cells and zebrafish embryos against α-Syn toxicity. Our study sheds new light on the gut microbiome as a potential source of protection against PD and opens up for new microbiome-based therapeutic strategies.</p>","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":" ","pages":"100161"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules and Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.mocell.2024.100161","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The clinical manifestations of Parkinson's Disease (PD) are driven by aggregation of α-Synuclein (α-Syn) in the brain. However, there is increasing evidence that PD may be initiated in the gut and thence spread to the brain, e.g. via the vagus nerve. Many studies link PD to changes in the gut microbiome, and bacterial amyloid has been shown to stimulate α-syn aggregation. Yet we are not aware of any studies reporting on a direct connection between microbiome components and α-Syn aggregation. Here we report that soluble extract from the gut microbiome of the rats, particularly young rats transgenic for PD, show a remarkably strong ability to inhibit in vitro α-Syn aggregation and keep it natively unfolded and monomeric. The active component(s) are heat-labile molecule(s) of around 30-100 kDa size which are neither nucleic acid nor lipid. Proteomic analysis identified several proteins whose concentrations in different rat samples correlated with the samples' anti-inhibitory activity, while a subsequent pulldown assay linked the protein chaperone DnaK with the inhibitory activity of young rat's microbiome, confirmed in subsequent in vitro assays. Remarkably, the microbiome extracts also protected neuroblastoma SH-SY5Y cells and zebrafish embryos against α-Syn toxicity. Our study sheds new light on the gut microbiome as a potential source of protection against PD and opens up for new microbiome-based therapeutic strategies.
期刊介绍:
Molecules and Cells is an international on-line open-access journal devoted to the advancement and dissemination of fundamental knowledge in molecular and cellular biology. It was launched in 1990 and ISO abbreviation is ''Mol. Cells''. Reports on a broad range of topics of general interest to molecular and cell biologists are published. It is published on the last day of each month by the Korean Society for Molecular and Cellular Biology.