IL-17A-Induced Redox Imbalance and Inflammatory Responses in Mice Lung via Act1-TRAF6-IKBα Signaling Pathway: Implications for Lung Disease Pathogenesis.

IF 4.5 2区 医学 Q2 CELL BIOLOGY Inflammation Pub Date : 2024-11-28 DOI:10.1007/s10753-024-02199-9
Ekta Swarnamayee Panda, Avtar Singh Gautam, Shivam Kumar Pandey, Rakesh Kumar Singh
{"title":"IL-17A-Induced Redox Imbalance and Inflammatory Responses in Mice Lung via Act1-TRAF6-IKBα Signaling Pathway: Implications for Lung Disease Pathogenesis.","authors":"Ekta Swarnamayee Panda, Avtar Singh Gautam, Shivam Kumar Pandey, Rakesh Kumar Singh","doi":"10.1007/s10753-024-02199-9","DOIUrl":null,"url":null,"abstract":"<p><p>IL-17A is a potent proinflammatory cytokine that plays a crucial role in the pathogenesis of various lung diseases. This study focused on the evaluation of the role of IL-17 receptor signaling through one-week intranasal exposure of IL-17A in lung tissues of BALB/c mice. IL-17A triggered inflammatory responses in the mice lungs and led to changes in the morphological alveolar arrangements. Exposure of IL-17A induced redox imbalance by triggering an increase in the level of the pro-oxidants (reactive oxygen species, nitrite and malondialdehyde) and reduction of the levels of antioxidant proteins (glutathione, superoxide dismutase and catalase) in the lung tissue. IL-17A also caused a significant elevation in the levels of proinflammatory cytokines lines including TNF-α, IL-1β and IL-6, in lung tissue as well as in plasma. More interestingly, these changes were accompanied by the alterations in IL-17 receptor downstream signaling through activation of IL-17R-Act1-TRAF6-IKBα-mediated pathway. IL-17A exposure also caused lung tissue injury, recruitment and polarization of immune cells from anti-inflammatory to pro-inflammatory. This study clearly demonstrated the role of IL-17A-induced signaling in worsening lung inflammatory diseases, and hence points towards its emergence as an important therapeutic target to control lung inflammation.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02199-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

IL-17A is a potent proinflammatory cytokine that plays a crucial role in the pathogenesis of various lung diseases. This study focused on the evaluation of the role of IL-17 receptor signaling through one-week intranasal exposure of IL-17A in lung tissues of BALB/c mice. IL-17A triggered inflammatory responses in the mice lungs and led to changes in the morphological alveolar arrangements. Exposure of IL-17A induced redox imbalance by triggering an increase in the level of the pro-oxidants (reactive oxygen species, nitrite and malondialdehyde) and reduction of the levels of antioxidant proteins (glutathione, superoxide dismutase and catalase) in the lung tissue. IL-17A also caused a significant elevation in the levels of proinflammatory cytokines lines including TNF-α, IL-1β and IL-6, in lung tissue as well as in plasma. More interestingly, these changes were accompanied by the alterations in IL-17 receptor downstream signaling through activation of IL-17R-Act1-TRAF6-IKBα-mediated pathway. IL-17A exposure also caused lung tissue injury, recruitment and polarization of immune cells from anti-inflammatory to pro-inflammatory. This study clearly demonstrated the role of IL-17A-induced signaling in worsening lung inflammatory diseases, and hence points towards its emergence as an important therapeutic target to control lung inflammation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IL-17A 通过 Act1-TRAF6-IKBα 信号通路诱导小鼠肺部氧化还原失衡和炎症反应:对肺部疾病发病机制的影响。
IL-17A 是一种强效促炎细胞因子,在各种肺部疾病的发病机制中起着至关重要的作用。本研究通过对 BALB/c 小鼠肺组织进行为期一周的 IL-17A 鼻内暴露,重点评估了 IL-17 受体信号传导的作用。IL-17A 触发了小鼠肺部的炎症反应,并导致肺泡形态排列发生变化。暴露于 IL-17A 会引起氧化还原失衡,引发肺组织中促氧化剂(活性氧、亚硝酸盐和丙二醛)水平的升高和抗氧化蛋白(谷胱甘肽、超氧化物歧化酶和过氧化氢酶)水平的降低。IL-17A 还导致肺组织和血浆中的促炎细胞因子(包括 TNF-α、IL-1β 和 IL-6)水平显著升高。更有趣的是,这些变化伴随着通过激活 IL-17R-Act1-TRAF6-IKBα 介导的途径改变 IL-17 受体下游信号传导。IL-17A 暴露还导致肺组织损伤、免疫细胞从抗炎性招募和极化为促炎性。这项研究清楚地表明了IL-17A诱导的信号传导在肺部炎症疾病恶化中的作用,因此它将成为控制肺部炎症的一个重要治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inflammation
Inflammation 医学-免疫学
CiteScore
9.70
自引率
0.00%
发文量
168
审稿时长
3.0 months
期刊介绍: Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.
期刊最新文献
Exploration of the Combined Mechanism of Direct and Indirect Effects of Paeoniflorin in the Treatment of Cholestasis. Kurarinone Mitigates LPS-Induced Inflammatory Osteolysis by Inhibiting Osteoclastogenesis Through the Reduction of ROS Levels and Suppression of the PI3K/AKT Signaling Pathway. KW-2449 Ameliorates Cardiac Dysfunction in a Rat Model of Sepsis-Induced Cardiomyopathy. Mitigation of Neuroinflammation and Oxidative Stress in Rotenone-Induced Parkinson Mouse Model through Liposomal Coenzyme-Q10 Intervention: A Comprehensive In-vivo Study. Toll-like Receptors 1, 3 and 7 Activate Distinct Genetic Features of NF-κB Signaling and γ-Protocadherin Expression in Human Cardiac Fibroblasts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1