{"title":"Proteomic and metabolic profiling reveals molecular phenotype associated with chemotrophic growth of <i>Rubrivivax benzoatilyticus</i> JA2 on L-tryptophan.","authors":"Shabbir Ahmad, Mujahid Mohammed, Lakshmi Prasuna Mekala, Sasikala Chintalapati, Ramana Chintalapati","doi":"10.1039/d4mo00170b","DOIUrl":null,"url":null,"abstract":"<p><p><i>Rubrivivax benzoatilyticus</i> strain JA2 is an anoxygenic phototrophic bacterium, able to grow under different growth modes. Particularly under chemotrophic conditions, it produces novel Trp-melanin, anthocyanin-like, and pyomelanin pigments. However, the underlying molecular adaptations of strain JA2 that lead to the formation of novel metabolites under chemotrophic conditions remain unexplored. The present study used iTRAQ-based global proteomic and metabolite profiling to unravel the biochemical processes operating under the L-tryptophan-fed chemotrophic state. Exometabolite profiling of L-tryptophan fed chemotrophic cultures revealed production of diverse indolic metabolites, many of which are hydroxyindole derivatives, along with unique pigmented metabolites. Proteomic profiling revealed a global shift in the proteome and detected 2411 proteins, corresponding to 61.8% proteins expressed. Proteins related to signalling, transcription-coupled translation, stress, membrane transport, and metabolism were highly differentially regulated. Extensive rewiring of amino acid, fatty acid, lipid, and energy metabolism was observed under L-tyrptophan fed chemotrophic conditions. Moreover, energy conservation and cell protection strategies such as efflux pumps involved in the efflux of aromatic compounds were activated. The study demonstrated a correlation between some of the detected indole derivatives and the up-regulation of proteins associated with L-tryptophan catabolism, indicating a possible role of aromatic mono/dioxygenases in the formation of hydroxyindole derivatives and pigments under chemotrophic conditions. The overall study revealed metabolic flexibility in utilizing aromatic compounds and molecular adaptations of strain JA2 under the chemotrophic state.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1039/d4mo00170b","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rubrivivax benzoatilyticus strain JA2 is an anoxygenic phototrophic bacterium, able to grow under different growth modes. Particularly under chemotrophic conditions, it produces novel Trp-melanin, anthocyanin-like, and pyomelanin pigments. However, the underlying molecular adaptations of strain JA2 that lead to the formation of novel metabolites under chemotrophic conditions remain unexplored. The present study used iTRAQ-based global proteomic and metabolite profiling to unravel the biochemical processes operating under the L-tryptophan-fed chemotrophic state. Exometabolite profiling of L-tryptophan fed chemotrophic cultures revealed production of diverse indolic metabolites, many of which are hydroxyindole derivatives, along with unique pigmented metabolites. Proteomic profiling revealed a global shift in the proteome and detected 2411 proteins, corresponding to 61.8% proteins expressed. Proteins related to signalling, transcription-coupled translation, stress, membrane transport, and metabolism were highly differentially regulated. Extensive rewiring of amino acid, fatty acid, lipid, and energy metabolism was observed under L-tyrptophan fed chemotrophic conditions. Moreover, energy conservation and cell protection strategies such as efflux pumps involved in the efflux of aromatic compounds were activated. The study demonstrated a correlation between some of the detected indole derivatives and the up-regulation of proteins associated with L-tryptophan catabolism, indicating a possible role of aromatic mono/dioxygenases in the formation of hydroxyindole derivatives and pigments under chemotrophic conditions. The overall study revealed metabolic flexibility in utilizing aromatic compounds and molecular adaptations of strain JA2 under the chemotrophic state.
Molecular omicsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍:
Molecular Omics publishes high-quality research from across the -omics sciences.
Topics include, but are not limited to:
-omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance
-omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets
-omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques
-studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field.
Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits.
Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.