Yuta Matsuno, Kazuya Kusama, Koji Kimura, Kazuhiko Imakawa
{"title":"Ovine conceptuses express phospholipase inhibitory genes on days 14-15 of pregnancy, interacting with IFNT pathways.","authors":"Yuta Matsuno, Kazuya Kusama, Koji Kimura, Kazuhiko Imakawa","doi":"10.1530/REP-24-0286","DOIUrl":null,"url":null,"abstract":"<p><strong>In brief: </strong>Ovine conceptuses highly express phospholipase inhibitory genes just before the conceptus attachment period. Phospholipase inhibitors could synergistically work with the interferon pathway on the endometrium.</p><p><strong>Abstract: </strong>In mammals, various molecules are involved in the biochemical interaction between the conceptus and endometrium for pregnancy recognition and establishment. In ruminants, interferon tau (IFNT) is the pregnancy recognition factor; however, IFNT alone does not explain corpus luteum maintenance. Although data on factors expressed during implantation have been accumulated, we hypothesized that the conceptus produces additional uncharacterized molecules during the period of conceptus attachment. This study aimed to identify new conceptus secretory proteins involved in the biochemical interaction between the conceptus and endometrium in sheep. We analyzed RNA-sequence data of ovine conceptuses from pregnant animals on days 12, 14, 15, 16, 17, 19, 20 and 21. To identify novel secretory proteins, we focused on highly expressed but uncharacterized genes and performed in silico protein function analysis, identifying genes encoding phospholipase inhibitory proteins expressed on days 14 and 15. Recombinant proteins from these genes were produced, and the effects on cultured bovine endometrial epithelial cells (EECs) and stromal cells (STRs) were analyzed by RNA-sequence analysis. Differentially expressed gene (DEG) analysis demonstrated that the recombinant protein treatment upregulated 31 genes and downregulated 4 genes in EECs; it also upregulated 398 genes and downregulated 66 genes in STRs, including implantation-related genes, such as ISG15, OAS1X, OAS1Y, PARP9, PARP14, MX1 and PTGS2. Gene set enrichment analysis revealed that DEGs were enriched in several implantation-related pathways, including ISG15 antivirus mechanisms. These results suggest that, in addition to numerous characterized molecules, phospholipase inhibitory protein is a new candidate molecule in enabling biochemical communication between the conceptus and endometrium.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-24-0286","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In brief: Ovine conceptuses highly express phospholipase inhibitory genes just before the conceptus attachment period. Phospholipase inhibitors could synergistically work with the interferon pathway on the endometrium.
Abstract: In mammals, various molecules are involved in the biochemical interaction between the conceptus and endometrium for pregnancy recognition and establishment. In ruminants, interferon tau (IFNT) is the pregnancy recognition factor; however, IFNT alone does not explain corpus luteum maintenance. Although data on factors expressed during implantation have been accumulated, we hypothesized that the conceptus produces additional uncharacterized molecules during the period of conceptus attachment. This study aimed to identify new conceptus secretory proteins involved in the biochemical interaction between the conceptus and endometrium in sheep. We analyzed RNA-sequence data of ovine conceptuses from pregnant animals on days 12, 14, 15, 16, 17, 19, 20 and 21. To identify novel secretory proteins, we focused on highly expressed but uncharacterized genes and performed in silico protein function analysis, identifying genes encoding phospholipase inhibitory proteins expressed on days 14 and 15. Recombinant proteins from these genes were produced, and the effects on cultured bovine endometrial epithelial cells (EECs) and stromal cells (STRs) were analyzed by RNA-sequence analysis. Differentially expressed gene (DEG) analysis demonstrated that the recombinant protein treatment upregulated 31 genes and downregulated 4 genes in EECs; it also upregulated 398 genes and downregulated 66 genes in STRs, including implantation-related genes, such as ISG15, OAS1X, OAS1Y, PARP9, PARP14, MX1 and PTGS2. Gene set enrichment analysis revealed that DEGs were enriched in several implantation-related pathways, including ISG15 antivirus mechanisms. These results suggest that, in addition to numerous characterized molecules, phospholipase inhibitory protein is a new candidate molecule in enabling biochemical communication between the conceptus and endometrium.
期刊介绍:
Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction.
Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease.
Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.