Optimisation of gene expression noise for cellular persistence against lethal events

IF 1.9 4区 数学 Q2 BIOLOGY Journal of Theoretical Biology Pub Date : 2024-11-25 DOI:10.1016/j.jtbi.2024.111996
Pavol Bokes , Abhyudai Singh
{"title":"Optimisation of gene expression noise for cellular persistence against lethal events","authors":"Pavol Bokes ,&nbsp;Abhyudai Singh","doi":"10.1016/j.jtbi.2024.111996","DOIUrl":null,"url":null,"abstract":"<div><div>Bacterial cell persistence, crucial for survival under adverse conditions like antibiotic exposure, is intrinsically linked to stochastic fluctuations in gene expression. Certain genes, while inhibiting growth under normal circumstances, confer tolerance to antibiotics at elevated expression levels. The occurrence of antibiotic events lead to instantaneous cellular responses with varied survival probabilities correlated with gene expression levels. Notably, cells with lower protein concentrations face higher mortality rates. This study aims to elucidate an optimal strategy for protein expression conducive to cellular survival. Through comprehensive mathematical analysis, we determine the optimal burst size and frequency that maximise cell proliferation. Furthermore, we explore how the optimal expression distribution changes as the cost of protein expression to growth escalates. Our model reveals a hysteresis phenomenon, characterised by discontinuous transitions between deterministic and stochastic optima. Intriguingly, stochastic optima possess a noise floor, representing the minimal level of fluctuations essential for optimal cellular resilience.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"598 ","pages":"Article 111996"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324002819","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial cell persistence, crucial for survival under adverse conditions like antibiotic exposure, is intrinsically linked to stochastic fluctuations in gene expression. Certain genes, while inhibiting growth under normal circumstances, confer tolerance to antibiotics at elevated expression levels. The occurrence of antibiotic events lead to instantaneous cellular responses with varied survival probabilities correlated with gene expression levels. Notably, cells with lower protein concentrations face higher mortality rates. This study aims to elucidate an optimal strategy for protein expression conducive to cellular survival. Through comprehensive mathematical analysis, we determine the optimal burst size and frequency that maximise cell proliferation. Furthermore, we explore how the optimal expression distribution changes as the cost of protein expression to growth escalates. Our model reveals a hysteresis phenomenon, characterised by discontinuous transitions between deterministic and stochastic optima. Intriguingly, stochastic optima possess a noise floor, representing the minimal level of fluctuations essential for optimal cellular resilience.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化基因表达噪音,使细胞持续对抗致死事件。
细菌细胞的持久性对于在抗生素暴露等不利条件下的生存至关重要,它与基因表达的随机波动有着内在联系。某些基因虽然在正常情况下会抑制生长,但在表达水平升高时会产生对抗生素的耐受性。抗生素事件的发生会导致细胞瞬时反应,其存活概率与基因表达水平相关。值得注意的是,蛋白质浓度较低的细胞死亡率较高。本研究旨在阐明有利于细胞存活的最佳蛋白质表达策略。通过综合数学分析,我们确定了使细胞增殖最大化的最佳猝发大小和频率。此外,我们还探讨了最佳表达分布如何随着蛋白质表达对生长的成本增加而发生变化。我们的模型揭示了一种滞后现象,其特点是确定性最优和随机最优之间的不连续转换。耐人寻味的是,随机最佳值具有噪音底限,代表了细胞最佳恢复能力所必需的最低波动水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
5.00%
发文量
218
审稿时长
51 days
期刊介绍: The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including: • Brain and Neuroscience • Cancer Growth and Treatment • Cell Biology • Developmental Biology • Ecology • Evolution • Immunology, • Infectious and non-infectious Diseases, • Mathematical, Computational, Biophysical and Statistical Modeling • Microbiology, Molecular Biology, and Biochemistry • Networks and Complex Systems • Physiology • Pharmacodynamics • Animal Behavior and Game Theory Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.
期刊最新文献
Editorial Board Impact of evolutionary relatedness on species diversification and tree shape Editorial Board Possible regulatory mechanisms of typical and atypical absence seizures through an equivalent projection from the subthalamic nucleus to the cortex: Evidence in a computational model Efficient coupling of within-and between-host infectious disease dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1