A Polymeric Vesicle System for Combined Lung Cancer Therapy through Chemotherapy and Vasculature Normalization.

IF 8.1 Q1 ENGINEERING, BIOMEDICAL Biomaterials research Pub Date : 2024-11-27 eCollection Date: 2024-01-01 DOI:10.34133/bmr.0117
Ding Wang, Cheng-Jie Qiu, Yaoqing Chu, Anzhuo Zhang, Ran Huang, Si-Jian Pan, Lianjiang Tan
{"title":"A Polymeric Vesicle System for Combined Lung Cancer Therapy through Chemotherapy and Vasculature Normalization.","authors":"Ding Wang, Cheng-Jie Qiu, Yaoqing Chu, Anzhuo Zhang, Ran Huang, Si-Jian Pan, Lianjiang Tan","doi":"10.34133/bmr.0117","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer remains a great threat to human health despite the rapid development of various therapeutic methods. Chemotherapy continues to be the most commonly employed treatment for lung cancer; however, it often suffers from low drug delivery efficiency and severe side effects. To enhance the therapeutic efficacy of chemotherapy, we developed a novel strategy that integrates tumor vasculature normalization with the co-delivery of therapeutic agents. This strategy employs a diblock polymeric vesicle with a reduction-sensitive linkage. Paclitaxel (PTX) is encapsulated in the bilayer, while an acid-sensitive nitric oxide (NO) precursor, DETA NONOate, and zinc oxide nanoparticles (ZnO NPs) are loaded into the central cavity. The resulting nanosystem, (ZnO,NONO)@Ves-PTX, is designed to release NO under the acidic conditions typical of the tumor microenvironment (TME) and intracellular environment. The released NO in the TME inhibits angiogenesis, thereby facilitating the delivery and distribution of therapeutic agents. Upon internalization by tumor cells, (ZnO,NONO)@Ves-PTX decomposes in response to intracellular glutathione (GSH), releasing the loaded agents. DETA NONOate and ZnO NPs generate NO and Zn<sup>2+</sup> ions, respectively, at the intracellular pH, which synergistically inhibit tumor growth alongside PTX. This combined therapeutic approach demonstrated remarkable potential in improving the chemotherapeutic efficacy for lung cancer, offering a promising direction for future cancer treatments.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0117"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599482/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer remains a great threat to human health despite the rapid development of various therapeutic methods. Chemotherapy continues to be the most commonly employed treatment for lung cancer; however, it often suffers from low drug delivery efficiency and severe side effects. To enhance the therapeutic efficacy of chemotherapy, we developed a novel strategy that integrates tumor vasculature normalization with the co-delivery of therapeutic agents. This strategy employs a diblock polymeric vesicle with a reduction-sensitive linkage. Paclitaxel (PTX) is encapsulated in the bilayer, while an acid-sensitive nitric oxide (NO) precursor, DETA NONOate, and zinc oxide nanoparticles (ZnO NPs) are loaded into the central cavity. The resulting nanosystem, (ZnO,NONO)@Ves-PTX, is designed to release NO under the acidic conditions typical of the tumor microenvironment (TME) and intracellular environment. The released NO in the TME inhibits angiogenesis, thereby facilitating the delivery and distribution of therapeutic agents. Upon internalization by tumor cells, (ZnO,NONO)@Ves-PTX decomposes in response to intracellular glutathione (GSH), releasing the loaded agents. DETA NONOate and ZnO NPs generate NO and Zn2+ ions, respectively, at the intracellular pH, which synergistically inhibit tumor growth alongside PTX. This combined therapeutic approach demonstrated remarkable potential in improving the chemotherapeutic efficacy for lung cancer, offering a promising direction for future cancer treatments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过化疗和血管正常化联合治疗肺癌的聚合物囊泡系统
尽管各种治疗方法发展迅速,但肺癌仍然是人类健康的一大威胁。化疗仍然是肺癌最常用的治疗方法,但它往往存在给药效率低和副作用大的问题。为了提高化疗的疗效,我们开发了一种将肿瘤血管正常化与联合给药相结合的新策略。该策略采用了一种具有还原敏感性连接的二嵌段聚合物囊泡。紫杉醇(PTX)被包裹在双分子层中,而对酸敏感的一氧化氮(NO)前体 DETA NONOate 和氧化锌纳米颗粒(ZnO NPs)则被装载到中心腔中。由此产生的纳米系统 (ZnO,NONO)@Ves-PTX 可在肿瘤微环境(TME)和细胞内环境的典型酸性条件下释放一氧化氮。在肿瘤微环境中释放的 NO 可抑制血管生成,从而促进治疗药物的输送和分布。被肿瘤细胞内化后,(ZnO,NONO)@Ves-PTX 会在细胞内谷胱甘肽(GSH)的作用下分解,释放出所负载的药剂。DETA NONOate 和 ZnO NPs 在细胞内 pH 值下分别生成 NO 和 Zn2+ 离子,与 PTX 一起协同抑制肿瘤生长。这种联合治疗方法在提高肺癌化疗疗效方面具有显著的潜力,为未来的癌症治疗提供了一个很有前景的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing the Intradermal Delivery of Hair Follicle Dermal Papilla Cell Spheroids for Hair Follicle Regeneration in Nude Mice. Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis. A Novel Cell-Penetrating Peptide-Vascular Endothelial Growth Factor Small Interfering Ribonucleic Acid Complex That Mediates the Inhibition of Angiogenesis by Human Umbilical Vein Endothelial Cells and in an Ex Vivo Mouse Aorta Ring Model. Functionalized Periosteum-Derived Microsphere-Hydrogel with Sequential Release of E7 Short Peptide/miR217 for Large Bone Defect Repairing. A Magnetic-Responsive Biomimetic Nanosystem Coated with Glioma Stem Cell Membranes Effectively Targets and Eliminates Malignant Gliomas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1