Korri S Hershenhouse, Brandon E Ferrell, Ethan Glezer, Jinling Wu, Daniel Goldstein
{"title":"A profile of the impella 5.5 for the clinical management of cardiogenic shock and a review of the current indications for use and future directions.","authors":"Korri S Hershenhouse, Brandon E Ferrell, Ethan Glezer, Jinling Wu, Daniel Goldstein","doi":"10.1080/17434440.2024.2436122","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The Impella 5.5 device is a surgically inserted, trans-valvular, microaxial flow device capable of providing 5.5 L/min of continuous, antegrade flow from the left ventricle (LV) to the aorta. The ability of the Impella 5.5 to fully pressure and volume unload the dysfunctional LV while allowing for mobilization and rehabilitation has rapidly expanded its use. Clinical use scenarios include escalation of support for acute myocardial infarction cardiogenic shock (AMICS), transition from extracorporeal membrane oxygenation to mobile support, bridge to transplantation or durable MCS in acute decompensated heart failure, or perioperative use in post-cardiotomy cardiogenic shock (PCCS).</p><p><strong>Areas covered: </strong>This review provides a profile of the Impella 5.5 device, summarizes the current literature surrounding clinical applications, reviews active and upcoming clinical trials, and projects future applications for the device through an expert review.</p><p><strong>Expert opinion: </strong>The development of the Impella 5.5 has allowed for monitoring of left-heart recovery, optimizing right ventricular function, and rehabilitating patients to meet bridging endpoints. The 2018 heart transplant allocation system modifications have expanded the use of temporary mechanical circulatory support (tMCS) on the transplant waitlist, increasing the number of patients transplanted on support. With increased safety and durability, an expanding frontier is used in perioperative support for PCCS in high-risk cardiac surgery.</p>","PeriodicalId":94006,"journal":{"name":"Expert review of medical devices","volume":" ","pages":"1087-1099"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert review of medical devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17434440.2024.2436122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The Impella 5.5 device is a surgically inserted, trans-valvular, microaxial flow device capable of providing 5.5 L/min of continuous, antegrade flow from the left ventricle (LV) to the aorta. The ability of the Impella 5.5 to fully pressure and volume unload the dysfunctional LV while allowing for mobilization and rehabilitation has rapidly expanded its use. Clinical use scenarios include escalation of support for acute myocardial infarction cardiogenic shock (AMICS), transition from extracorporeal membrane oxygenation to mobile support, bridge to transplantation or durable MCS in acute decompensated heart failure, or perioperative use in post-cardiotomy cardiogenic shock (PCCS).
Areas covered: This review provides a profile of the Impella 5.5 device, summarizes the current literature surrounding clinical applications, reviews active and upcoming clinical trials, and projects future applications for the device through an expert review.
Expert opinion: The development of the Impella 5.5 has allowed for monitoring of left-heart recovery, optimizing right ventricular function, and rehabilitating patients to meet bridging endpoints. The 2018 heart transplant allocation system modifications have expanded the use of temporary mechanical circulatory support (tMCS) on the transplant waitlist, increasing the number of patients transplanted on support. With increased safety and durability, an expanding frontier is used in perioperative support for PCCS in high-risk cardiac surgery.