Measuring topographic change after volcanic eruptions using multistatic SAR satellites: Simulations in preparation for ESA’s Harmony mission

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2024-11-29 DOI:10.1016/j.rse.2024.114528
Odysseas Pappas , Juliet Biggs , Pau Prats-Iraola , Andrea Pulella , Adam Stinton , Alin Achim
{"title":"Measuring topographic change after volcanic eruptions using multistatic SAR satellites: Simulations in preparation for ESA’s Harmony mission","authors":"Odysseas Pappas ,&nbsp;Juliet Biggs ,&nbsp;Pau Prats-Iraola ,&nbsp;Andrea Pulella ,&nbsp;Adam Stinton ,&nbsp;Alin Achim","doi":"10.1016/j.rse.2024.114528","DOIUrl":null,"url":null,"abstract":"<div><div>Volcanoes are dynamic systems whose surfaces constantly evolve. During volcanic eruptions, which can pose great threat to local communities, significant changes to the local topography occur as edifices build up and/or collapse and lava, tephra and other eruptive products are deposited. Monitoring such changes in topography is crucial to risk assessment and the prediction of further eruptive behaviour. Multistatic Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing modality particularly suited to this task as it allows for the creation of digital elevation models (DEMs) that can accurately map out three-dimensional changes in the topography, regardless of weather conditions and temporal decorrelation caused by volcanic activity. Few such missions are however currently operational. Harmony is an upcoming ESA mission that will be operating alongside Sentinel-1 and will provide multistatic InSAR capabilities for the measurement of stress and deformation across the cryosphere, the oceans and the solid earth, with the monitoring of topographic change due to volcanic eruptions being one of the specific areas of focus for the mission.</div><div>In this work we demonstrate the use of high resolution bistatic interferometric data from TanDEM-X for the measurement of topographic change after recent eruptions in El Reventador, Ecuador and La Soufrière, St. Vincent and the Grenadines. Additionally, we simulate data at the lower, 20 m resolution of Harmony so as to gain insights into its capability in quantifying topographic change. Our results demonstrate that Harmony’s resolution can be sufficient to resolve and measure accurately topographic change such as the emplacement of lava flows, but may be challenged in areas of steep topography where unwrapping errors can occur. The experimental results highlight the effect of acquisition pass direction with respect to local topography, the challenges arising in areas of steep topography and the importance of masking results based on estimates of precision and resolution. Finally we discuss some of the challenges, as well as implications of the Harmony mission for the future of volcano monitoring.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"317 ","pages":"Article 114528"},"PeriodicalIF":11.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724005546","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Volcanoes are dynamic systems whose surfaces constantly evolve. During volcanic eruptions, which can pose great threat to local communities, significant changes to the local topography occur as edifices build up and/or collapse and lava, tephra and other eruptive products are deposited. Monitoring such changes in topography is crucial to risk assessment and the prediction of further eruptive behaviour. Multistatic Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing modality particularly suited to this task as it allows for the creation of digital elevation models (DEMs) that can accurately map out three-dimensional changes in the topography, regardless of weather conditions and temporal decorrelation caused by volcanic activity. Few such missions are however currently operational. Harmony is an upcoming ESA mission that will be operating alongside Sentinel-1 and will provide multistatic InSAR capabilities for the measurement of stress and deformation across the cryosphere, the oceans and the solid earth, with the monitoring of topographic change due to volcanic eruptions being one of the specific areas of focus for the mission.
In this work we demonstrate the use of high resolution bistatic interferometric data from TanDEM-X for the measurement of topographic change after recent eruptions in El Reventador, Ecuador and La Soufrière, St. Vincent and the Grenadines. Additionally, we simulate data at the lower, 20 m resolution of Harmony so as to gain insights into its capability in quantifying topographic change. Our results demonstrate that Harmony’s resolution can be sufficient to resolve and measure accurately topographic change such as the emplacement of lava flows, but may be challenged in areas of steep topography where unwrapping errors can occur. The experimental results highlight the effect of acquisition pass direction with respect to local topography, the challenges arising in areas of steep topography and the importance of masking results based on estimates of precision and resolution. Finally we discuss some of the challenges, as well as implications of the Harmony mission for the future of volcano monitoring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
Unsupervised object-based spectral unmixing for subpixel mapping An advanced dorsiventral leaf radiative transfer model for simulating multi-angular and spectral reflection: Considering asymmetry of leaf internal and surface structure Angular normalization of GOES-16 and GOES-17 land surface temperature over overlapping region using an extended time-evolving kernel-driven model Measuring topographic change after volcanic eruptions using multistatic SAR satellites: Simulations in preparation for ESA’s Harmony mission Mapping and reconstruct suspended sediment dynamics (1986–2021) in the source region of the Yangtze River, Qinghai-Tibet Plateau using Google Earth Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1