A Chemically Powered Rotary Molecular Motor Based on Reversible Oxazepine Formation

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-11-28 DOI:10.1002/anie.202418933
Tian-Jiao Han, Xin-Yan Ke, Min-Can Wang, Shao-Fei Ni, Guang-Jian Mei
{"title":"A Chemically Powered Rotary Molecular Motor Based on Reversible Oxazepine Formation","authors":"Tian-Jiao Han, Xin-Yan Ke, Min-Can Wang, Shao-Fei Ni, Guang-Jian Mei","doi":"10.1002/anie.202418933","DOIUrl":null,"url":null,"abstract":"While biological machines are powered mainly by chemical transformations, chemically driven artificial rotary motor systems are very limited. Here, we report an aniline-phenol-based rotary molecular motor that operates via an information ratchet mechanism. The 360° directional rotation about a single covalent bond can be chemically driven by reversible oxazepine formation. Both the oxazepine formation and hydrolysis steps are kinetically gated via dynamic kinetic resolution, arising from the kinetic bias of chiral catalysts for enantiomers. Given the 95% ee (97.5:2.5) and 88% ee (94:6) of the individual gating steps of motor analogues, the overall directionality ratio could be calculated to be 91.7:8.3 (97.5% x 94% ≈ 91.7%), which means that the motor will make one mistake (backward rotation) approximately every 11 to 12 turns.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"6 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202418933","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

While biological machines are powered mainly by chemical transformations, chemically driven artificial rotary motor systems are very limited. Here, we report an aniline-phenol-based rotary molecular motor that operates via an information ratchet mechanism. The 360° directional rotation about a single covalent bond can be chemically driven by reversible oxazepine formation. Both the oxazepine formation and hydrolysis steps are kinetically gated via dynamic kinetic resolution, arising from the kinetic bias of chiral catalysts for enantiomers. Given the 95% ee (97.5:2.5) and 88% ee (94:6) of the individual gating steps of motor analogues, the overall directionality ratio could be calculated to be 91.7:8.3 (97.5% x 94% ≈ 91.7%), which means that the motor will make one mistake (backward rotation) approximately every 11 to 12 turns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
CO-tolerant heterogeneous ruthenium catalysts for efficient formic acid dehydrogenation Integrating Machine Learning and Large Language Models to Advance Exploration of Electrochemical Reactions Mutual Dependence between Membrane Phase Separation and Bacterial Division Protein Dynamics in Synthetic Cell Models Tillandsia-Inspired Asymmetric Covalent Organic Framework Membranes for Unidirectional Low-Friction Water Collection Suppressing Exciton–Vibration Coupling via Intramolecular Noncovalent Interactions for Low-Energy-Loss Organic Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1