Engineering functional groups of ZnMn2O4/GO composite nanofibers for efficient and stable supercapacitors

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Surfaces and Interfaces Pub Date : 2024-11-26 DOI:10.1016/j.surfin.2024.105517
Chen Zhang , Dongsheng Chen , Yixin Luo , Yiming Yuan , Ying Wang , Zuobao Yang
{"title":"Engineering functional groups of ZnMn2O4/GO composite nanofibers for efficient and stable supercapacitors","authors":"Chen Zhang ,&nbsp;Dongsheng Chen ,&nbsp;Yixin Luo ,&nbsp;Yiming Yuan ,&nbsp;Ying Wang ,&nbsp;Zuobao Yang","doi":"10.1016/j.surfin.2024.105517","DOIUrl":null,"url":null,"abstract":"<div><div>Spinel ZnMn<sub>2</sub>O<sub>4</sub> (ZMO) is a promising supercapacitor materials due to its high theoretical capacity, non-toxic, and more environmental benefits. However, traditional ZMO suffers from poor conductivity and instability, limiting its performance. To address these issues, we incorporated graphene oxide (GO) into ZMO, forming mesoporous ZMO/GO nanofibers (NFs) with a large specific surface area via electrospinning and further annealing. GO doping introduces oxygen-containing functional groups that add active sites for ion adsorption and increase electrode conductivity, as confirmed by COMSOL simulations, showing a rise in maximum current density from 6976 A m<sup>−2</sup> to 15705 A m<sup>−2</sup>. The NF structure also prevents GO aggregation, enhancing ion transport and stabilizing ZMO. Consequently, the ZMO/GO3 electrode achieves a high specific capacitance (1489.5 F g<sup>−1</sup> at 1 A g<sup>−1</sup> with 0.3 wt% GO) and excellent electrochemical performance. The asymmetric supercapacitor (ZMO/GO3//AC) with activated carbon achieves an energy density of 22.04 Wh kg<sup>−1</sup> at 799.84 W kg<sup>−1</sup> and retains 91.3 % capacitance after 5000 cycles at 5 A g<sup>−1</sup>, capable of powering an LED. This approach underscores ZMO's potential for high-power supercapacitor applications.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"56 ","pages":"Article 105517"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024016729","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Spinel ZnMn2O4 (ZMO) is a promising supercapacitor materials due to its high theoretical capacity, non-toxic, and more environmental benefits. However, traditional ZMO suffers from poor conductivity and instability, limiting its performance. To address these issues, we incorporated graphene oxide (GO) into ZMO, forming mesoporous ZMO/GO nanofibers (NFs) with a large specific surface area via electrospinning and further annealing. GO doping introduces oxygen-containing functional groups that add active sites for ion adsorption and increase electrode conductivity, as confirmed by COMSOL simulations, showing a rise in maximum current density from 6976 A m−2 to 15705 A m−2. The NF structure also prevents GO aggregation, enhancing ion transport and stabilizing ZMO. Consequently, the ZMO/GO3 electrode achieves a high specific capacitance (1489.5 F g−1 at 1 A g−1 with 0.3 wt% GO) and excellent electrochemical performance. The asymmetric supercapacitor (ZMO/GO3//AC) with activated carbon achieves an energy density of 22.04 Wh kg−1 at 799.84 W kg−1 and retains 91.3 % capacitance after 5000 cycles at 5 A g−1, capable of powering an LED. This approach underscores ZMO's potential for high-power supercapacitor applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效稳定超级电容器的ZnMn2O4/GO复合纳米纤维的工程官能团
尖晶石ZnMn2O4 (ZMO)具有理论容量高、无毒、环保等优点,是一种很有前途的超级电容器材料。然而,传统的ZMO具有导电性差和不稳定性,限制了其性能。为了解决这些问题,我们将氧化石墨烯(GO)掺入ZMO中,通过静电纺丝和进一步退火形成具有大比表面积的ZMO/GO介孔纳米纤维(NFs)。COMSOL模拟证实,氧化石墨烯掺杂引入了含氧官能团,增加了离子吸附的活性位点,提高了电极的导电性,显示出最大电流密度从6976 a m−2增加到15705 a m−2。NF结构还能阻止氧化石墨烯的聚集,增强离子传递,稳定ZMO。因此,ZMO/GO3电极具有较高的比电容(当氧化石墨烯含量为0.3 wt%时,比电容为1489.5 F g−1)和优异的电化学性能。采用活性炭制备的非对称超级电容器(ZMO/GO3//AC)在799.84 W kg - 1下的能量密度为22.04 Wh kg - 1,在5a g - 1下循环5000次后仍保持91.3%的电容,能够为LED供电。这种方法强调了ZMO在高功率超级电容器应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
期刊最新文献
Machine-learning investigation of layer-resolved collective dynamics in interfacial liquid Fe Editorial Board Artificial neural network-based modeling of sustainable plasma process parameters for predicting wettability of aircraft composite surfaces Green fabrication of fully bio-based poly(vinyl alcohol)/phytic acid composite aerogels with robust 3D networks for sustainable thermal insulation and fire safety Highly efficient and stable nitrophenol reduction using silver nanoparticles anchored on Ce-BTC embedded electrospun PAN/PS nanofibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1