CRMSP: A semi-supervised approach for key information extraction with Class-Rebalancing and Merged Semantic Pseudo-Labeling

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-16 DOI:10.1016/j.neucom.2024.128907
Qi Zhang, Yonghong Song, Pengcheng Guo, Yangyang Hui
{"title":"CRMSP: A semi-supervised approach for key information extraction with Class-Rebalancing and Merged Semantic Pseudo-Labeling","authors":"Qi Zhang,&nbsp;Yonghong Song,&nbsp;Pengcheng Guo,&nbsp;Yangyang Hui","doi":"10.1016/j.neucom.2024.128907","DOIUrl":null,"url":null,"abstract":"<div><div>There is a growing demand in the field of Key Information Extraction (KIE) to apply semi-supervised learning (SSL) to save manpower and costs, as training document data using fully-supervised methods requires labor-intensive manual annotation. The main challenges of applying SSL in the KIE are (1) underestimation of the confidence of tail classes in the long-tailed distribution and (2) difficulty in achieving intra-class compactness and inter-class separability of tail features. To address these challenges, we propose a novel semi-supervised approach for KIE with Class-Rebalancing and Merged Semantic Pseudo-Labeling (CRMSP). Firstly, the Class-Rebalancing Pseudo-Labeling (CRP) module introduces a reweighting factor to rebalance pseudo-labels, increasing attention to tail classes. Secondly, we propose the Merged Semantic Pseudo-Labeling (MSP) module to cluster tail features of unlabeled data by assigning samples to Merged Prototypes (MP). Additionally, we designed a new contrastive loss specifically for MSP. Extensive experimental results on three well-known benchmarks demonstrate that CRMSP achieves state-of-the-art performance. Remarkably, CRMSP achieves 3.24% f1-score improvement over state-of-the-art on the CORD.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128907"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016783","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

There is a growing demand in the field of Key Information Extraction (KIE) to apply semi-supervised learning (SSL) to save manpower and costs, as training document data using fully-supervised methods requires labor-intensive manual annotation. The main challenges of applying SSL in the KIE are (1) underestimation of the confidence of tail classes in the long-tailed distribution and (2) difficulty in achieving intra-class compactness and inter-class separability of tail features. To address these challenges, we propose a novel semi-supervised approach for KIE with Class-Rebalancing and Merged Semantic Pseudo-Labeling (CRMSP). Firstly, the Class-Rebalancing Pseudo-Labeling (CRP) module introduces a reweighting factor to rebalance pseudo-labels, increasing attention to tail classes. Secondly, we propose the Merged Semantic Pseudo-Labeling (MSP) module to cluster tail features of unlabeled data by assigning samples to Merged Prototypes (MP). Additionally, we designed a new contrastive loss specifically for MSP. Extensive experimental results on three well-known benchmarks demonstrate that CRMSP achieves state-of-the-art performance. Remarkably, CRMSP achieves 3.24% f1-score improvement over state-of-the-art on the CORD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于类再平衡和合并语义伪标记的半监督关键信息提取方法
关键信息提取(Key Information Extraction, KIE)领域对半监督学习(semi-supervised learning, SSL)的应用需求日益增长,以节省人力和成本,因为使用全监督方法训练文档数据需要耗费大量劳动的人工标注。在KIE中应用SSL的主要挑战是:(1)低估尾类在长尾分布中的置信度;(2)难以实现尾特征的类内紧密性和类间可分性。为了解决这些挑战,我们提出了一种基于类再平衡和合并语义伪标记(CRMSP)的半监督KIE方法。首先,类再平衡伪标签(CRP)模块引入了一个重新加权因子来重新平衡伪标签,增加了对尾部类的关注。其次,我们提出了合并语义伪标记(MSP)模块,通过将样本分配给合并原型(MP)来对未标记数据的尾部特征进行聚类。此外,我们还专门为MSP设计了一种新的对比损耗。在三个知名基准测试上的大量实验结果表明,CRMSP达到了最先进的性能。值得注意的是,CRMSP在CORD上的得分比最先进的水平提高了3.24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Agricultural surface water extraction in environmental remote sensing: A novel semantic segmentation model emphasizing contextual information enhancement and foreground detail attention Physics embedded neural network: Novel data-free approach towards scientific computing and applications in transfer learning View-Channel Mixer Network for Double Incomplete Multi-View Multi-Label learning Diffusion models for image super-resolution: State-of-the-art and future directions MAFNet: A Multi-scale Aligned Fusion Network for infrared small target detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1