Improving multi-view ensemble learning with Round-Robin feature set partitioning

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Data & Knowledge Engineering Pub Date : 2024-11-24 DOI:10.1016/j.datak.2024.102380
Aditya Kumar , Jainath Yadav
{"title":"Improving multi-view ensemble learning with Round-Robin feature set partitioning","authors":"Aditya Kumar ,&nbsp;Jainath Yadav","doi":"10.1016/j.datak.2024.102380","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-view Ensemble Learning (MEL) techniques have shown remarkable success in improving the accuracy and resilience of classification algorithms by combining multiple base classifiers trained over different perspectives of a dataset, known as views. One crucial factor affecting ensemble performance is the selection of diverse and informative feature subsets. Feature Set Partitioning (FSP) methods address this challenge by creating distinct views of features for each base classifier. In this context, we propose the Round-Robin Feature Set Partitioning (<span><math><mi>RR</mi></math></span>-FSP) technique, which introduces a novel approach to feature allocation among views. This novel approach evenly distributes highly correlated features across views, thereby enhancing ensemble diversity, promoting balanced feature utilization, and encouraging the more equitable distribution of correlated features, <span><math><mi>RR</mi></math></span>-FSP contributes to the advancement of MEL techniques. Through experiments on various datasets, we demonstrate that <span><math><mi>RR</mi></math></span>-FSP offers improved classification accuracy and robustness, making it a valuable addition to the arsenal of FSP techniques for MEL.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"156 ","pages":"Article 102380"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24001046","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-view Ensemble Learning (MEL) techniques have shown remarkable success in improving the accuracy and resilience of classification algorithms by combining multiple base classifiers trained over different perspectives of a dataset, known as views. One crucial factor affecting ensemble performance is the selection of diverse and informative feature subsets. Feature Set Partitioning (FSP) methods address this challenge by creating distinct views of features for each base classifier. In this context, we propose the Round-Robin Feature Set Partitioning (RR-FSP) technique, which introduces a novel approach to feature allocation among views. This novel approach evenly distributes highly correlated features across views, thereby enhancing ensemble diversity, promoting balanced feature utilization, and encouraging the more equitable distribution of correlated features, RR-FSP contributes to the advancement of MEL techniques. Through experiments on various datasets, we demonstrate that RR-FSP offers improved classification accuracy and robustness, making it a valuable addition to the arsenal of FSP techniques for MEL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用循环特征集划分改进多视图集成学习
多视图集成学习(MEL)技术通过组合在数据集的不同视角(称为视图)上训练的多个基本分类器,在提高分类算法的准确性和弹性方面取得了显著的成功。影响集成性能的一个关键因素是选择多样化和信息丰富的特征子集。Feature Set Partitioning (FSP)方法通过为每个基本分类器创建不同的特征视图来解决这一挑战。在此背景下,我们提出了循环特征集分区(RR-FSP)技术,该技术引入了一种新的视图间特征分配方法。该方法将高度相关的特征均匀分布在视图中,从而增强了集成多样性,促进了特征的平衡利用,并促进了相关特征的更公平分布。RR-FSP有助于MEL技术的发展。通过对各种数据集的实验,我们证明了RR-FSP提供了更高的分类精度和鲁棒性,使其成为用于MEL的FSP技术库的一个有价值的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
期刊最新文献
Improving multi-view ensemble learning with Round-Robin feature set partitioning White box specification of intervention policies for prescriptive process monitoring A goal-oriented document-grounded dialogue based on evidence generation Data-aware process models: From soundness checking to repair Context normalization: A new approach for the stability and improvement of neural network performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1