Working condition decoupling adversarial network: A novel method for multi-target domain fault diagnosis

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-19 DOI:10.1016/j.neucom.2024.128953
Xuepeng Zhang , Jinrui Wang , Xue Jiang , Zongzhen Zhang , Baokun Han , Huaiqian Bao , Xingxing Jiang
{"title":"Working condition decoupling adversarial network: A novel method for multi-target domain fault diagnosis","authors":"Xuepeng Zhang ,&nbsp;Jinrui Wang ,&nbsp;Xue Jiang ,&nbsp;Zongzhen Zhang ,&nbsp;Baokun Han ,&nbsp;Huaiqian Bao ,&nbsp;Xingxing Jiang","doi":"10.1016/j.neucom.2024.128953","DOIUrl":null,"url":null,"abstract":"<div><div>In the practical application of rotating machinery, the change of working conditions can meet different manufacturing requirements. When fault diagnosis is performed on monitoring data with different working conditions, the change of data distribution will bring interference information which is highly related to working conditions and inconsistent matching problems in the process of multi-target domain transfer. In order to solve these problems, a working condition decoupling adversarial network (WCDAN) is proposed for multi-target domain fault diagnosis. Specifically, the prototype discrepancy alignment module is constructed following a weight-shared wavelet convolution feature extractor to ensure a clear prototype representation boundary. Then, the adaptive domain discriminator weight, along with the acquired multi-domain discrepancy, are utilized to decouple the working conditions. This process filters out interference information that highly associated with the source domain working conditions while preserving the inherent fault characteristics. Furthermore, the strategy of multi-domain hybrid alignment aims to minimize the disparity between different domains and solve the inconsistent matching issue. Based on two gearbox fault datasets under stable and unstable conditions, the comparative experimental results show that the WCDAN can be generalized from a single source domain to multiple target domains at the same time and achieve excellent fault diagnosis performance.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128953"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224017247","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the practical application of rotating machinery, the change of working conditions can meet different manufacturing requirements. When fault diagnosis is performed on monitoring data with different working conditions, the change of data distribution will bring interference information which is highly related to working conditions and inconsistent matching problems in the process of multi-target domain transfer. In order to solve these problems, a working condition decoupling adversarial network (WCDAN) is proposed for multi-target domain fault diagnosis. Specifically, the prototype discrepancy alignment module is constructed following a weight-shared wavelet convolution feature extractor to ensure a clear prototype representation boundary. Then, the adaptive domain discriminator weight, along with the acquired multi-domain discrepancy, are utilized to decouple the working conditions. This process filters out interference information that highly associated with the source domain working conditions while preserving the inherent fault characteristics. Furthermore, the strategy of multi-domain hybrid alignment aims to minimize the disparity between different domains and solve the inconsistent matching issue. Based on two gearbox fault datasets under stable and unstable conditions, the comparative experimental results show that the WCDAN can be generalized from a single source domain to multiple target domains at the same time and achieve excellent fault diagnosis performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工况解耦对抗网络:一种多目标域故障诊断新方法
在旋转机械的实际应用中,工作条件的变化可以满足不同的制造要求。在对不同工况下的监测数据进行故障诊断时,数据分布的变化会带来与工况高度相关的干扰信息和多目标域转移过程中的匹配不一致问题。为了解决这些问题,提出了一种用于多目标域故障诊断的工况解耦对抗网络(WCDAN)。具体而言,在权值共享的小波卷积特征提取器的基础上构建原型差异对齐模块,以确保清晰的原型表示边界。然后,利用自适应域鉴别器权值和获取的多域差异对工况进行解耦。该过程滤除了与源域工况高度相关的干扰信息,同时保留了固有的故障特征。此外,多域混合对齐策略旨在最小化不同域之间的差异,解决匹配不一致的问题。基于稳定和不稳定两种工况下的齿轮箱故障数据集,对比实验结果表明,WCDAN可以从单一源域同时推广到多个目标域,取得了优异的故障诊断性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Monocular thermal SLAM with neural radiance fields for 3D scene reconstruction Learning a more compact representation for low-rank tensor completion An HVS-derived network for assessing the quality of camouflaged targets with feature fusion Global Span Semantic Dependency Awareness and Filtering Network for nested named entity recognition A user behavior-aware multi-task learning model for enhanced short video recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1