PSscheduler: A parameter synchronization scheduling algorithm for distributed machine learning in reconfigurable optical networks

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-17 DOI:10.1016/j.neucom.2024.128876
Ling Liu , Xiaoqiong Xu , Pan Zhou , Xi Chen , Daji Ergu , Hongfang Yu , Gang Sun , Mohsen Guizani
{"title":"PSscheduler: A parameter synchronization scheduling algorithm for distributed machine learning in reconfigurable optical networks","authors":"Ling Liu ,&nbsp;Xiaoqiong Xu ,&nbsp;Pan Zhou ,&nbsp;Xi Chen ,&nbsp;Daji Ergu ,&nbsp;Hongfang Yu ,&nbsp;Gang Sun ,&nbsp;Mohsen Guizani","doi":"10.1016/j.neucom.2024.128876","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing size of training datasets and models, parameter synchronization stage puts a heavy burden on the network, and communication has become one of the main performance bottlenecks of distributed machine learning (DML). Concurrently, optical circuit switch (OCS) with high bandwidth and reconfigurable features has increasingly introduced into the construction of network topology, obtaining the reconfigurable optical networks. Actually, OCS is conducive to accelerating the parameter synchronization stage, and thus improves training performance. However, unreasonable circuit scheduling algorithm has a great impact on parameter synchronization time because of non-negligible OCS switching delay. Besides, most of the existing circuit scheduling algorithms do not effectively use the training characteristics of DML, and the performance gains are limited. Therefore, in this paper, we study the parameter synchronization scheduling algorithm in reconfigurable optical networks, and propose PSscheduler by jointly optimizing the circuit scheduling and deployment of parameter servers in parameter server (PS) architecture. Specifically, a mathematical optimization model is established first, which takes into account the deployment of parameter servers, the allocation of parameter blocks and circuit scheduling. Subsequently, the mathematical model is solved by relaxed variables and deterministic rounding approach. The results of simulation based on real DML workloads demonstrate that compared to <em>Sunflow</em> and <em>HLF</em> , PSscheduler is more stable and can reduce parameter synchronization time (PST) by up to 46.61% and 25%, respectively.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128876"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016473","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing size of training datasets and models, parameter synchronization stage puts a heavy burden on the network, and communication has become one of the main performance bottlenecks of distributed machine learning (DML). Concurrently, optical circuit switch (OCS) with high bandwidth and reconfigurable features has increasingly introduced into the construction of network topology, obtaining the reconfigurable optical networks. Actually, OCS is conducive to accelerating the parameter synchronization stage, and thus improves training performance. However, unreasonable circuit scheduling algorithm has a great impact on parameter synchronization time because of non-negligible OCS switching delay. Besides, most of the existing circuit scheduling algorithms do not effectively use the training characteristics of DML, and the performance gains are limited. Therefore, in this paper, we study the parameter synchronization scheduling algorithm in reconfigurable optical networks, and propose PSscheduler by jointly optimizing the circuit scheduling and deployment of parameter servers in parameter server (PS) architecture. Specifically, a mathematical optimization model is established first, which takes into account the deployment of parameter servers, the allocation of parameter blocks and circuit scheduling. Subsequently, the mathematical model is solved by relaxed variables and deterministic rounding approach. The results of simulation based on real DML workloads demonstrate that compared to Sunflow and HLF , PSscheduler is more stable and can reduce parameter synchronization time (PST) by up to 46.61% and 25%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PSscheduler:用于可重构光网络中分布式机器学习的参数同步调度算法
随着训练数据集和模型规模的不断扩大,参数同步阶段给网络带来了沉重的负担,通信成为分布式机器学习(DML)的主要性能瓶颈之一。同时,具有高带宽和可重构特性的光电路交换机(OCS)也越来越多地引入到网络拓扑结构中,实现了光网络的可重构。实际上,OCS有利于加速参数同步阶段,从而提高训练性能。然而,由于OCS切换时延不可忽略,不合理的电路调度算法对参数同步时间的影响很大。此外,现有的电路调度算法大多没有有效利用DML的训练特性,性能提升有限。因此,本文研究了可重构光网络中的参数同步调度算法,并通过共同优化参数服务器(PS)架构中参数服务器的电路调度和部署,提出了PSscheduler。具体而言,首先建立了考虑参数服务器部署、参数块分配和电路调度的数学优化模型;然后,采用松弛变量法和确定性舍入法求解数学模型。基于实际DML工作负载的仿真结果表明,与Sunflow和HLF相比,PSscheduler更加稳定,可将参数同步时间(PST)分别减少46.61%和25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Agricultural surface water extraction in environmental remote sensing: A novel semantic segmentation model emphasizing contextual information enhancement and foreground detail attention Physics embedded neural network: Novel data-free approach towards scientific computing and applications in transfer learning View-Channel Mixer Network for Double Incomplete Multi-View Multi-Label learning Diffusion models for image super-resolution: State-of-the-art and future directions MAFNet: A Multi-scale Aligned Fusion Network for infrared small target detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1