A fast optimization approach for seeking Nash equilibrium based on Nikaido–Isoda function, state transition algorithm and Gauss–Seidel technique

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-19 DOI:10.1016/j.neucom.2024.128922
Xiaojun Zhou , Zheng Wang , Tingwen Huang
{"title":"A fast optimization approach for seeking Nash equilibrium based on Nikaido–Isoda function, state transition algorithm and Gauss–Seidel technique","authors":"Xiaojun Zhou ,&nbsp;Zheng Wang ,&nbsp;Tingwen Huang","doi":"10.1016/j.neucom.2024.128922","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a fast optimization approach for non-cooperative games with complicated payoff functions (non-smooth, non-concave, etc.). The Nikaido–Isoda function is employed to convert knotty Nash equilibrium problems (NEPs) into large-scale optimization problems with complex objective functions. To efficiently seek Nash equilibrium, the resulting optimization problems are decomposed into many subproblems where each player tries to maximize its payoff when observing others’ current strategies. All players’ strategies are updated iteratively until reaching Nash equilibrium. Specifically, a dynamic state transition algorithm (STA) is proposed to seek global optima of subproblems at each iteration, and the sequential quadratic programming (SQP) is embedded into dynamic STA for convergence acceleration. A Gauss–Seidel technique is utilized for players’ strategy updates to improve computational efficiency further. Numerical examples drawn from multidisciplinary contexts validate that the proposed approach could effectively seek out Nash equilibrium for simultaneously decreasing the time-consuming remarkably.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128922"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122401693X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a fast optimization approach for non-cooperative games with complicated payoff functions (non-smooth, non-concave, etc.). The Nikaido–Isoda function is employed to convert knotty Nash equilibrium problems (NEPs) into large-scale optimization problems with complex objective functions. To efficiently seek Nash equilibrium, the resulting optimization problems are decomposed into many subproblems where each player tries to maximize its payoff when observing others’ current strategies. All players’ strategies are updated iteratively until reaching Nash equilibrium. Specifically, a dynamic state transition algorithm (STA) is proposed to seek global optima of subproblems at each iteration, and the sequential quadratic programming (SQP) is embedded into dynamic STA for convergence acceleration. A Gauss–Seidel technique is utilized for players’ strategy updates to improve computational efficiency further. Numerical examples drawn from multidisciplinary contexts validate that the proposed approach could effectively seek out Nash equilibrium for simultaneously decreasing the time-consuming remarkably.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Nikaido-Isoda函数、状态转移算法和gaas - seidel技术的纳什均衡快速寻优方法
针对具有复杂支付函数(非光滑、非凹等)的非合作博弈,提出了一种快速优化方法。利用Nikaido-Isoda函数将棘手纳什均衡问题转化为具有复杂目标函数的大规模优化问题。为了有效地寻求纳什均衡,将优化问题分解为许多子问题,每个参与者在观察他人当前策略时都试图最大化自己的收益。所有参与者的策略迭代更新,直到达到纳什均衡。具体而言,提出了一种动态状态转移算法(STA),在每次迭代时寻求子问题的全局最优,并将序列二次规划(SQP)嵌入到动态状态转移算法中以加速收敛。利用高斯-塞德尔技术对玩家策略进行更新,进一步提高了计算效率。多学科背景下的数值算例验证了该方法能够有效地寻求纳什均衡,同时显著减少求解时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Monocular thermal SLAM with neural radiance fields for 3D scene reconstruction Learning a more compact representation for low-rank tensor completion An HVS-derived network for assessing the quality of camouflaged targets with feature fusion Global Span Semantic Dependency Awareness and Filtering Network for nested named entity recognition A user behavior-aware multi-task learning model for enhanced short video recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1