Diffusion-based framework for weakly-supervised temporal action localization

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2024-11-23 DOI:10.1016/j.patcog.2024.111207
Yuanbing Zou , Qingjie Zhao , Prodip Kumar Sarker , Shanshan Li , Lei Wang , Wangwang Liu
{"title":"Diffusion-based framework for weakly-supervised temporal action localization","authors":"Yuanbing Zou ,&nbsp;Qingjie Zhao ,&nbsp;Prodip Kumar Sarker ,&nbsp;Shanshan Li ,&nbsp;Lei Wang ,&nbsp;Wangwang Liu","doi":"10.1016/j.patcog.2024.111207","DOIUrl":null,"url":null,"abstract":"<div><div>Weakly supervised temporal action localization aims to localize action instances with only video-level supervision. Due to the absence of frame-level annotation supervision, how effectively separate action snippets and backgrounds from semantically ambiguous features becomes an arduous challenge for this task. To address this issue from a generative modeling perspective, we propose a novel diffusion-based network with two stages. Firstly, we design a local masking mechanism module to learn the local semantic information and generate binary masks at the early stage, which (1) are used to perform action-background separation and (2) serve as pseudo-ground truth required by the diffusion module. Then, we propose a diffusion module to generate high-quality action predictions under the pseudo-ground truth supervision in the second stage. In addition, we further optimize the new-refining operation in the local masking module to improve the operation efficiency. The experimental results demonstrate that the proposed method achieves a promising performance on the publicly available mainstream datasets THUMOS14 and ActivityNet. The code is available at <span><span>https://github.com/Rlab123/action_diff</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"160 ","pages":"Article 111207"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324009580","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Weakly supervised temporal action localization aims to localize action instances with only video-level supervision. Due to the absence of frame-level annotation supervision, how effectively separate action snippets and backgrounds from semantically ambiguous features becomes an arduous challenge for this task. To address this issue from a generative modeling perspective, we propose a novel diffusion-based network with two stages. Firstly, we design a local masking mechanism module to learn the local semantic information and generate binary masks at the early stage, which (1) are used to perform action-background separation and (2) serve as pseudo-ground truth required by the diffusion module. Then, we propose a diffusion module to generate high-quality action predictions under the pseudo-ground truth supervision in the second stage. In addition, we further optimize the new-refining operation in the local masking module to improve the operation efficiency. The experimental results demonstrate that the proposed method achieves a promising performance on the publicly available mainstream datasets THUMOS14 and ActivityNet. The code is available at https://github.com/Rlab123/action_diff.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩散的弱监督时间动作定位框架
弱监督时态动作定位旨在仅通过视频级别的监督来定位动作实例。由于缺乏框架级标注监督,如何有效地将动作片段和背景从语义模糊的特征中分离出来成为该任务的一个艰巨挑战。为了从生成建模的角度解决这个问题,我们提出了一个新的基于扩散的网络,分为两个阶段。首先,我们设计了局部掩蔽机制模块来学习局部语义信息,并在早期生成二值掩码(1)用于动作-背景分离(2)作为扩散模块所需的伪地真值。然后,在第二阶段,我们提出了一个扩散模块来生成伪地面真值监督下的高质量动作预测。此外,我们进一步优化了局部屏蔽模块中的新精炼操作,以提高操作效率。实验结果表明,该方法在公开可用的主流数据集THUMOS14和ActivityNet上取得了良好的性能。代码可在https://github.com/Rlab123/action_diff上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
Cascade residual learning based adaptive feature aggregation for light field super-resolution Online Asymmetric Supervised Discrete Cross-Modal Hashing for Streaming Multimedia Data Rank-revealing fully-connected tensor network decomposition and its application to tensor completion Brain anatomy prior modeling to forecast clinical progression of cognitive impairment with structural MRI Adaptively robust high-order tensor factorization for low-rank tensor reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1