Plaid fabric image retrieval based on hand-crafted features and relevant feedback

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Displays Pub Date : 2024-11-23 DOI:10.1016/j.displa.2024.102899
Xiaoting Zhang , Pengyu Zhao , Ruru Pan , Weidong Gao
{"title":"Plaid fabric image retrieval based on hand-crafted features and relevant feedback","authors":"Xiaoting Zhang ,&nbsp;Pengyu Zhao ,&nbsp;Ruru Pan ,&nbsp;Weidong Gao","doi":"10.1016/j.displa.2024.102899","DOIUrl":null,"url":null,"abstract":"<div><div>Common fabric image retrieval methods ignore the diversity and dynamism of user demands, the results are determined by the query image and cannot be dynamically adjusted. To solve this problem, this study proposes a novel image retrieval method for plaid fabrics based on hand-crafted features and relevant feedback. First, local texture descriptors are extracted by the local binary pattern on the separated images which are processed by Fourier transform. Global texture descriptors are extracted by scale-invariant feature transform (SIFT) and vector of locally aggregated descriptors (VLAD). Second, color moments with image partitioning are extracted to characterize spatial color information of plaid fabric images. Third, the extracted features are fused by the weight allocation for similarity measurement. Finally, the relevant feedback based on meta learning is involved to realize personalized adjustment and optimization of retrieval results. An image retrieval database is built as the benchmark by collecting over 44, 000 plaid fabric samples from the factory. Experiments show that precision and recall at rank eight reach to 70.6% and 62.6%, respectively, and mAP reaches to 0.690. Results prove that the proposed strategy is feasible and effective, which can realize plaid fabric image retrieval fast and efficiently.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"86 ","pages":"Article 102899"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224002634","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Common fabric image retrieval methods ignore the diversity and dynamism of user demands, the results are determined by the query image and cannot be dynamically adjusted. To solve this problem, this study proposes a novel image retrieval method for plaid fabrics based on hand-crafted features and relevant feedback. First, local texture descriptors are extracted by the local binary pattern on the separated images which are processed by Fourier transform. Global texture descriptors are extracted by scale-invariant feature transform (SIFT) and vector of locally aggregated descriptors (VLAD). Second, color moments with image partitioning are extracted to characterize spatial color information of plaid fabric images. Third, the extracted features are fused by the weight allocation for similarity measurement. Finally, the relevant feedback based on meta learning is involved to realize personalized adjustment and optimization of retrieval results. An image retrieval database is built as the benchmark by collecting over 44, 000 plaid fabric samples from the factory. Experiments show that precision and recall at rank eight reach to 70.6% and 62.6%, respectively, and mAP reaches to 0.690. Results prove that the proposed strategy is feasible and effective, which can realize plaid fabric image retrieval fast and efficiently.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
期刊最新文献
A assessment method for ergonomic risk based on fennec fox optimization algorithm and generalized regression neural network An overview of bit-depth enhancement: Algorithm datasets and evaluation No-reference underwater image quality assessment based on Multi-Scale and mutual information analysis DHDP-SLAM: Dynamic Hierarchical Dirichlet Process based data association for semantic SLAM Fabrication and Reflow of Indium Bumps for Active-Matrix Micro-LED Display of 3175 PPI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1