Source-Free Unsupervised Domain Adaptation Fundus Image Segmentation via Entropy Optimization and Anatomical Priors

Yijia Chen , Jiapeng Li , Haoze Yu , Lin Qi , Yongchun Li
{"title":"Source-Free Unsupervised Domain Adaptation Fundus Image Segmentation via Entropy Optimization and Anatomical Priors","authors":"Yijia Chen ,&nbsp;Jiapeng Li ,&nbsp;Haoze Yu ,&nbsp;Lin Qi ,&nbsp;Yongchun Li","doi":"10.1016/j.procs.2024.11.023","DOIUrl":null,"url":null,"abstract":"<div><div>This research focuses on fundus image segmentation within a source-free domain adaptation framework, where the availability of source images during the adaptation phase is limited due to privacy concerns. Although Source-Free Unsupervised Domain Adaptation (SFUDA) methods have seen significant innovative developments in recent years, they still face several challenges which include suboptimal performance due to substantial domain discrepancies, reliance on potentially noisy or inaccurate pseudo-labels during the adaptation process, and a lack of integration with domain-specific prior knowledge. To address these issues, this paper proposes a SFUDA framework via Entropy Optimization and Anatomical Priors (EOAPNet). To alleviate the influence of the divergence between the source and target domains, EOAPNet primarily evaluates the uncertainty (i.e., entropy) of predictions on target domain data and improves the model by focusing on high-entropy pixels or regions. Additionally, a weak-strong augmentation mean-teacher scheme is introduced in EOAPNet, which can enhance the accuracy of pseudo-labels and reduce error propagation. Thirdly, by integrating an anatomical knowledge-based class ratio prior into the overall loss function in the form of a Kullback–Leibler (KL) divergence, EOAPNet also incorporates expert domain knowledge. EOAPNet yields comparable results to several state-of-the-art adaptation techniques in experiments on two retinal image segmentation datasets involving the RIM-ONE-r3 and Drishti-GS datasets.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"250 ","pages":"Pages 182-187"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924032332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research focuses on fundus image segmentation within a source-free domain adaptation framework, where the availability of source images during the adaptation phase is limited due to privacy concerns. Although Source-Free Unsupervised Domain Adaptation (SFUDA) methods have seen significant innovative developments in recent years, they still face several challenges which include suboptimal performance due to substantial domain discrepancies, reliance on potentially noisy or inaccurate pseudo-labels during the adaptation process, and a lack of integration with domain-specific prior knowledge. To address these issues, this paper proposes a SFUDA framework via Entropy Optimization and Anatomical Priors (EOAPNet). To alleviate the influence of the divergence between the source and target domains, EOAPNet primarily evaluates the uncertainty (i.e., entropy) of predictions on target domain data and improves the model by focusing on high-entropy pixels or regions. Additionally, a weak-strong augmentation mean-teacher scheme is introduced in EOAPNet, which can enhance the accuracy of pseudo-labels and reduce error propagation. Thirdly, by integrating an anatomical knowledge-based class ratio prior into the overall loss function in the form of a Kullback–Leibler (KL) divergence, EOAPNet also incorporates expert domain knowledge. EOAPNet yields comparable results to several state-of-the-art adaptation techniques in experiments on two retinal image segmentation datasets involving the RIM-ONE-r3 and Drishti-GS datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Circular Supply Chains and Industry 4.0: An Analysis of Interfaces in Brazilian Foodtechs Potentials of the Metaverse for Robotized Applications in Industry 4.0 and Industry 5.0 Preface Preface Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1