ICFNet: Interactive-complementary fusion network for monocular 3D human pose estimation

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-22 DOI:10.1016/j.neucom.2024.128947
Yong Wang , Peng Liu , Hongbo Kang , Doudou Wu , Duoqian Miao
{"title":"ICFNet: Interactive-complementary fusion network for monocular 3D human pose estimation","authors":"Yong Wang ,&nbsp;Peng Liu ,&nbsp;Hongbo Kang ,&nbsp;Doudou Wu ,&nbsp;Duoqian Miao","doi":"10.1016/j.neucom.2024.128947","DOIUrl":null,"url":null,"abstract":"<div><div>Most existing methods for 3D human pose estimation from monocular images focus on learning the spatial correlation of either the global or local joints of the human body but fail to adequately capture the inherent dependencies between them. To address this limitation, we propose the Interactive Complementary Fusion Network (ICFNet), an algorithm designed to fully utilize the prior knowledge of both global and local joint relationships to enhance prediction performance. Specifically, we introduce two feature capturers: the Global Knowledge Prior Capturer (GKPC) and the Local Region Subject Capturer (LRSC), which respectively capture global body knowledge and local joint information. Additionally, we propose three joint constraint mechanisms to express the potential association dependencies between global and local joints, which are further modeled using two association capturers: the Refined-Regression Association Capture Module (RR-ACM) and the Generalized-Guidance Association Capture Module (GG-ACM). Moreover, we introduce a novel feature transformation module, the Link Conversion Module (LCM), to transform and augment pose features. The algorithm adopts a complementary process to enhance the interaction and fusion of global and local feature information by gradually imposing constraints on the physical topological features of the human body, thereby improving its modeling capabilities. Extensive experiments demonstrate that our proposed ICFNet achieves state-of-the-art results on two challenging benchmark datasets: Human 3.6M and MPI-INF-3DHP. The code and model are available at: <span><span>https://github.com/PENG-LAU/ICFNet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128947"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224017181","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Most existing methods for 3D human pose estimation from monocular images focus on learning the spatial correlation of either the global or local joints of the human body but fail to adequately capture the inherent dependencies between them. To address this limitation, we propose the Interactive Complementary Fusion Network (ICFNet), an algorithm designed to fully utilize the prior knowledge of both global and local joint relationships to enhance prediction performance. Specifically, we introduce two feature capturers: the Global Knowledge Prior Capturer (GKPC) and the Local Region Subject Capturer (LRSC), which respectively capture global body knowledge and local joint information. Additionally, we propose three joint constraint mechanisms to express the potential association dependencies between global and local joints, which are further modeled using two association capturers: the Refined-Regression Association Capture Module (RR-ACM) and the Generalized-Guidance Association Capture Module (GG-ACM). Moreover, we introduce a novel feature transformation module, the Link Conversion Module (LCM), to transform and augment pose features. The algorithm adopts a complementary process to enhance the interaction and fusion of global and local feature information by gradually imposing constraints on the physical topological features of the human body, thereby improving its modeling capabilities. Extensive experiments demonstrate that our proposed ICFNet achieves state-of-the-art results on two challenging benchmark datasets: Human 3.6M and MPI-INF-3DHP. The code and model are available at: https://github.com/PENG-LAU/ICFNet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ICFNet:用于单目三维人体姿态估计的交互互补融合网络
现有的基于单眼图像的三维人体姿态估计方法大多侧重于学习人体整体或局部关节的空间相关性,但未能充分捕捉到它们之间的内在依赖关系。为了解决这一限制,我们提出了交互式互补融合网络(ICFNet),该算法旨在充分利用全局和局部联合关系的先验知识来提高预测性能。具体来说,我们引入了两个特征捕获器:全局知识先验捕获器(GKPC)和局部区域主题捕获器(LRSC),它们分别捕获全局主体知识和局部联合信息。此外,我们提出了三种联合约束机制来表达全局和局部关节之间潜在的关联依赖关系,并使用两个关联捕获器进一步建模:精细回归关联捕获模块(RR-ACM)和广义制导关联捕获模块(GG-ACM)。此外,我们还引入了一种新的特征转换模块——链路转换模块(Link Conversion module, LCM),用于变换和增强姿态特征。该算法采用互补过程,通过逐步对人体物理拓扑特征施加约束,增强全局与局部特征信息的交互与融合,从而提高建模能力。大量的实验表明,我们提出的ICFNet在两个具有挑战性的基准数据集(Human 3.6M和MPI-INF-3DHP)上取得了最先进的结果。代码和模型可在https://github.com/PENG-LAU/ICFNet上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Monocular thermal SLAM with neural radiance fields for 3D scene reconstruction Learning a more compact representation for low-rank tensor completion An HVS-derived network for assessing the quality of camouflaged targets with feature fusion Global Span Semantic Dependency Awareness and Filtering Network for nested named entity recognition A user behavior-aware multi-task learning model for enhanced short video recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1