Cardioprotective effects of S-equol, a soybean metabolite with estrogen activity, and role of the PI3K/Akt pathway in a male rat model of ischemic reperfusion
{"title":"Cardioprotective effects of S-equol, a soybean metabolite with estrogen activity, and role of the PI3K/Akt pathway in a male rat model of ischemic reperfusion","authors":"Mariko Yamada , Yosuke Nakadate , Keisuke Omiya , Takeshi Oguchi , Masako Abe , Takashi Matsukawa","doi":"10.1016/j.steroids.2024.109542","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>S-equol, an isoflavone metabolite with high estrogenic activity, exhibits organ-protective effects via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. While estrogen has cardioprotective effects against ischemia–reperfusion injury, whether S-equol shares this capability remains uncertain. This study aimed to assess the cardioprotective effects of S-equol on stunned myocardium using an isolated rat heart model and investigate the involvement of PI3K/Akt signaling pathway.</div></div><div><h3>Methods</h3><div>Male rat hearts were perfused using the Langendorff system and divided into four groups: 1) modified Krebs–Henseleit (KH) buffer containing 1 μmol/L S-equol (EQ); 2) KH buffer (Cont); 3) KH buffer supplemented with 1 μmol/L S-equol and 100 nmol/L wortmannin (a specific PI3K inhibitor) (EQW); or 4) KH buffer containing wortmannin (ContW). After stabilization, each group was perfused for 20 min before undergoing 7.5 min of no-flow ischemia, followed by 20 min reperfusion. The primary outcome was the maximum left ventricular derivative of pressure development (left ventricle [LV] dP/dt max)<!--> <!-->after 20 min of reperfusion. Myocardial Akt and glycogen synthase kinase-3 beta (GSK-3β) were assayed using western blotting.</div></div><div><h3>Results</h3><div>LV dP/dt max was greater in the EQ group than that in the Cont group after 15 and 20 min of reperfusion; however, this effect was attenuated in the presence of PI3K inhibitors. S-equol treatment increased Akt and suppressed GSK-3β expression in the EQ group compared to that in the Cont group. However, these effects were not observed in the presence of wortmannin.</div></div><div><h3>Conclusion</h3><div>S-equol exerts a protective effect against myocardial ischemia–reperfusion injury, possibly by activating PI3K/Akt signaling.</div></div>","PeriodicalId":21997,"journal":{"name":"Steroids","volume":"213 ","pages":"Article 109542"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steroids","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039128X24001806","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
S-equol, an isoflavone metabolite with high estrogenic activity, exhibits organ-protective effects via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. While estrogen has cardioprotective effects against ischemia–reperfusion injury, whether S-equol shares this capability remains uncertain. This study aimed to assess the cardioprotective effects of S-equol on stunned myocardium using an isolated rat heart model and investigate the involvement of PI3K/Akt signaling pathway.
Methods
Male rat hearts were perfused using the Langendorff system and divided into four groups: 1) modified Krebs–Henseleit (KH) buffer containing 1 μmol/L S-equol (EQ); 2) KH buffer (Cont); 3) KH buffer supplemented with 1 μmol/L S-equol and 100 nmol/L wortmannin (a specific PI3K inhibitor) (EQW); or 4) KH buffer containing wortmannin (ContW). After stabilization, each group was perfused for 20 min before undergoing 7.5 min of no-flow ischemia, followed by 20 min reperfusion. The primary outcome was the maximum left ventricular derivative of pressure development (left ventricle [LV] dP/dt max) after 20 min of reperfusion. Myocardial Akt and glycogen synthase kinase-3 beta (GSK-3β) were assayed using western blotting.
Results
LV dP/dt max was greater in the EQ group than that in the Cont group after 15 and 20 min of reperfusion; however, this effect was attenuated in the presence of PI3K inhibitors. S-equol treatment increased Akt and suppressed GSK-3β expression in the EQ group compared to that in the Cont group. However, these effects were not observed in the presence of wortmannin.
Conclusion
S-equol exerts a protective effect against myocardial ischemia–reperfusion injury, possibly by activating PI3K/Akt signaling.
期刊介绍:
STEROIDS is an international research journal devoted to studies on all chemical and biological aspects of steroidal moieties. The journal focuses on both experimental and theoretical studies on the biology, chemistry, biosynthesis, metabolism, molecular biology, physiology and pharmacology of steroids and other molecules that target or regulate steroid receptors. Manuscripts presenting clinical research related to steroids, steroid drug development, comparative endocrinology of steroid hormones, investigations on the mechanism of steroid action and steroid chemistry are all appropriate for submission for peer review. STEROIDS publishes both original research and timely reviews. For details concerning the preparation of manuscripts see Instructions to Authors, which is published in each issue of the journal.