In vitro assessment of the role of endoplasmic reticulum stress in sunitinib-induced liver and kidney toxicity

IF 2.9 3区 医学 Q2 TOXICOLOGY Toxicology letters Pub Date : 2024-11-28 DOI:10.1016/j.toxlet.2024.11.010
Ege Arzuk , Güliz Armağan
{"title":"In vitro assessment of the role of endoplasmic reticulum stress in sunitinib-induced liver and kidney toxicity","authors":"Ege Arzuk ,&nbsp;Güliz Armağan","doi":"10.1016/j.toxlet.2024.11.010","DOIUrl":null,"url":null,"abstract":"<div><div>Sunitinib, a multi-targeted tyrosine kinase inhibitor, is prescribed for the treatment of metastatic gastrointestinal stromal tumors, advanced metastatic renal cell carcinoma, and pancreatic neuroendocrine tumors. Hepatotoxicity and nephrotoxicity are significant adverse effects of sunitinib administration; however, there is limited information regarding the molecular mechanisms of these adverse effects. The aim of the present study was to elucidate the role of endoplasmic reticulum stress in hepatotoxicity and nephrotoxicity induced by sunitinib. In addition to endoplasmic reticulum stress, oxidative stress and mitochondrial membrane potential were evaluated to investigate the molecular mechanism more comprehensively. Findings revealed that sunitinib exposure significantly increased the reactive oxygen species levels and decreased the Nrf2 gene expression and GSH/GSSG ratio, suggesting oxidative stress induction in normal hepatocyte (AML12) and normal kidney (HK-2) cell lines. Endoplasmic reticulum stress markers, including ATF4, CHOP, IRE1α, XBP1s and ATF6 mRNA expressions, were upregulated in AML12 cells. Furthermore, enhanced intracellular calcium levels also indicate endoplasmic reticulum stress in hepatocytes. In contrast, sunitinib exposure did not alter endoplasmic reticulum-related gene expression levels and intracellular calcium levels in HK-2 cells. In terms of mitochondrial membrane potential and caspase-3 activity, sunitinib induced mitochondrial membrane damage and increased caspase-3 activation not only in AML12 cells but also in HK-2 cells. The research findings indicate that sunitinib may induce cytotoxic effects in hepatocytes through mechanisms involving oxidative stress, endoplasmic reticulum stress, and mitochondrial damage. However, in the kidney, the toxicity mechanism is different from that of liver, and the endoplasmic reticulum stress does not seem to be involved in this mechanism.</div></div>","PeriodicalId":23206,"journal":{"name":"Toxicology letters","volume":"403 ","pages":"Pages 9-16"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378427424020575","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sunitinib, a multi-targeted tyrosine kinase inhibitor, is prescribed for the treatment of metastatic gastrointestinal stromal tumors, advanced metastatic renal cell carcinoma, and pancreatic neuroendocrine tumors. Hepatotoxicity and nephrotoxicity are significant adverse effects of sunitinib administration; however, there is limited information regarding the molecular mechanisms of these adverse effects. The aim of the present study was to elucidate the role of endoplasmic reticulum stress in hepatotoxicity and nephrotoxicity induced by sunitinib. In addition to endoplasmic reticulum stress, oxidative stress and mitochondrial membrane potential were evaluated to investigate the molecular mechanism more comprehensively. Findings revealed that sunitinib exposure significantly increased the reactive oxygen species levels and decreased the Nrf2 gene expression and GSH/GSSG ratio, suggesting oxidative stress induction in normal hepatocyte (AML12) and normal kidney (HK-2) cell lines. Endoplasmic reticulum stress markers, including ATF4, CHOP, IRE1α, XBP1s and ATF6 mRNA expressions, were upregulated in AML12 cells. Furthermore, enhanced intracellular calcium levels also indicate endoplasmic reticulum stress in hepatocytes. In contrast, sunitinib exposure did not alter endoplasmic reticulum-related gene expression levels and intracellular calcium levels in HK-2 cells. In terms of mitochondrial membrane potential and caspase-3 activity, sunitinib induced mitochondrial membrane damage and increased caspase-3 activation not only in AML12 cells but also in HK-2 cells. The research findings indicate that sunitinib may induce cytotoxic effects in hepatocytes through mechanisms involving oxidative stress, endoplasmic reticulum stress, and mitochondrial damage. However, in the kidney, the toxicity mechanism is different from that of liver, and the endoplasmic reticulum stress does not seem to be involved in this mechanism.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体外评估内质网应激在舒尼替尼诱导的肝和肾毒性中的作用
舒尼替尼是一种多靶点酪氨酸激酶抑制剂,用于治疗转移性胃肠道间质瘤、晚期转移性肾细胞癌和胰腺神经内分泌肿瘤。肝毒性和肾毒性是舒尼替尼的显著不良反应;然而,关于这些不良反应的分子机制的信息有限。本研究的目的是阐明内质网应激在舒尼替尼引起的肝毒性和肾毒性中的作用。除了内质网应激外,我们还评估了氧化应激和线粒体膜电位,以更全面地探讨其分子机制。结果显示,舒尼替尼暴露显著增加活性氧水平,降低Nrf2基因表达和GSH/GSSG比值,提示正常肝细胞(AML12)和正常肾细胞(HK-2)诱导氧化应激。AML12细胞内质网应激标志物ATF4、CHOP、IRE1α、XBP1s和ATF6 mRNA表达上调。此外,细胞内钙水平升高也表明肝细胞内质网应激。相反,舒尼替尼暴露没有改变HK-2细胞内质网相关基因表达水平和细胞内钙水平。在线粒体膜电位和caspase-3活性方面,舒尼替尼不仅在AML12细胞中引起线粒体膜损伤,而且在HK-2细胞中也增加了caspase-3的激活。研究结果表明,舒尼替尼可能通过氧化应激、内质网应激和线粒体损伤等机制诱导肝细胞毒性作用。然而,在肾脏中,毒性机制与肝脏不同,内质网应激似乎不参与这一机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicology letters
Toxicology letters 医学-毒理学
CiteScore
7.10
自引率
2.90%
发文量
897
审稿时长
33 days
期刊介绍: An international journal for the rapid publication of novel reports on a range of aspects of toxicology, especially mechanisms of toxicity.
期刊最新文献
The effects of occupational aluminum exposure on blood pressure and blood glucose in workers - a longitudinal study in northern China. Corrigendum to "Review of the genotoxicity of "Arvin compounds", drinking water contaminants formed by the degradation of antioxidants in polyolefin pipes" [Toxicol. Lett. 402 (2024) 81-90]. Binding of ligands to the aryl hydrocarbon receptor: An overview of methods. Involvement of mitochondrial dysfunction and oxidative stress in the nephrotoxicity induced by high-fat diet in Sprague-Dawley rats. A simple acetylcholinesterase inhibition assay for the quantification of the nerve agent VX: Application in a Franz cell model with rat skin and various decontaminants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1