Yao Zheng , Jiajia Li , Jiancao Gao , Wei Jin , Jiawen Hu , Yi Sun , Haojun Zhu , Gangchun Xu
{"title":"Apoptosis, MAPK signaling pathway affected in tilapia liver following nano-microplastics and sulfamethoxazole acute co-exposure","authors":"Yao Zheng , Jiajia Li , Jiancao Gao , Wei Jin , Jiawen Hu , Yi Sun , Haojun Zhu , Gangchun Xu","doi":"10.1016/j.cbd.2024.101370","DOIUrl":null,"url":null,"abstract":"<div><div>Studies showed that toxicants that adhered to the surface of nano-microplastics (NPs) have toxicological effects. Juvenile tilapia were divided into four groups namely the control group (A), 100 ng·L<sup>−1</sup> sulfamethoxazole (SMZ) group (B), 75 nm NPs group (C) and SMZ + 75 nm NPs group (D), and were exposed to an acute test for 2, 4 and 8 days. The hepatic histopathological changes, enzymatic activities, transcriptomics and proteomics analysis have been performed. The results showed that; the enzymatic activities of anti-oxidative enzymes (ROS, SOD, EROD), energy (ATP), lipid metabolism (TC, TG, FAS, LPL, ACC), pro-inflammatory factors (TNFα, IL-1β) and apoptosis (Caspase 3) have decreased significantly at 8 d. Hepatic histopathological results revealed the narrowed hepatic sinuses, displaced nucleus, and vacuoles under SMZ exposure. Transcriptome results demonstrated that endocytosis, MAPK signaling pathway, apoptosis, lysosome and herpes simplex infection were enriched in group C at 8 d. <em>apaf1</em>, <em>casp3a</em>, <em>nfkbiaa</em> (apoptosis, except for 8 d) were significantly increased, <em>il1b</em> and <em>tgfb3</em>, <em>fgfr2</em> showed significant increase and decrease in group C/D. <em>ctsd</em> and <em>ctsk</em> associated with apoptosis have been especially significantly increased at 8 d, while MAPK signaling pathway, <em>gadd45ga</em>, <em>gadd45gb/gadd45gg</em> have been significantly decreased and increased, as well as <em>map3k3</em>/<em>map3k2</em> significantly decreased at 8 d. Apoptosis and MAPK signaling pathway were affected and the synergistic effect was verified in tilapia liver following NPs and SMZ acute co-exposure.</div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":"53 ","pages":"Article 101370"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X24001837","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Studies showed that toxicants that adhered to the surface of nano-microplastics (NPs) have toxicological effects. Juvenile tilapia were divided into four groups namely the control group (A), 100 ng·L−1 sulfamethoxazole (SMZ) group (B), 75 nm NPs group (C) and SMZ + 75 nm NPs group (D), and were exposed to an acute test for 2, 4 and 8 days. The hepatic histopathological changes, enzymatic activities, transcriptomics and proteomics analysis have been performed. The results showed that; the enzymatic activities of anti-oxidative enzymes (ROS, SOD, EROD), energy (ATP), lipid metabolism (TC, TG, FAS, LPL, ACC), pro-inflammatory factors (TNFα, IL-1β) and apoptosis (Caspase 3) have decreased significantly at 8 d. Hepatic histopathological results revealed the narrowed hepatic sinuses, displaced nucleus, and vacuoles under SMZ exposure. Transcriptome results demonstrated that endocytosis, MAPK signaling pathway, apoptosis, lysosome and herpes simplex infection were enriched in group C at 8 d. apaf1, casp3a, nfkbiaa (apoptosis, except for 8 d) were significantly increased, il1b and tgfb3, fgfr2 showed significant increase and decrease in group C/D. ctsd and ctsk associated with apoptosis have been especially significantly increased at 8 d, while MAPK signaling pathway, gadd45ga, gadd45gb/gadd45gg have been significantly decreased and increased, as well as map3k3/map3k2 significantly decreased at 8 d. Apoptosis and MAPK signaling pathway were affected and the synergistic effect was verified in tilapia liver following NPs and SMZ acute co-exposure.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.