Potential of Trichoderma species to control Rosellinia necatrix, the etiological agent of white root rot

IF 3.7 2区 农林科学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biological Control Pub Date : 2024-12-01 DOI:10.1016/j.biocontrol.2024.105664
Shailesh S. Sawant , Sarika R. Bhapkar , Euddeum Choi , Byulhana Lee , Janghoon Song , Young Sik Jo , YoSup Park , Ho-Jin Seo
{"title":"Potential of Trichoderma species to control Rosellinia necatrix, the etiological agent of white root rot","authors":"Shailesh S. Sawant ,&nbsp;Sarika R. Bhapkar ,&nbsp;Euddeum Choi ,&nbsp;Byulhana Lee ,&nbsp;Janghoon Song ,&nbsp;Young Sik Jo ,&nbsp;YoSup Park ,&nbsp;Ho-Jin Seo","doi":"10.1016/j.biocontrol.2024.105664","DOIUrl":null,"url":null,"abstract":"<div><div>White root rot, caused by the fungal pathogen <em>Dematophora necatrix</em> (syn. <em>Rosellinia necatrix</em>), poses a threat to crops worldwide, leading to substantial economic losses. Biological control using antagonistic fungi, such as <em>Trichoderma</em> spp., has emerged as a promising alternative to chemical fungicides in fungal disease management. In this study, we investigated the potential of three <em>Trichoderma</em> species, <em>Trichoderma harzianum</em> strain 40788 from the Korean Agriculture Culture Collection (KACC), <em>T. atroviride</em> (KACC 43393), and <em>T. asperellum</em> (KACC 43821), as biocontrol agents against four <em>R. necatrix</em> strains (KACC 40446, 40445, 40447, and 40168). Dual-culture assays revealed that <em>T. harzianum</em> (KACC 40788) and <em>T. atroviride</em> (KACC 43393) rapidly inhibited mycelial growth, achieving up to 80% suppression of strains KACC 40445 and KACC 40446, whereas <em>T. asperellum</em> (KACC 43821) exhibited lower inhibition. In volatile antibiotic production assays, volatile metabolites produced by <em>T. harzianum</em> (KACC 40788) and <em>T. atroviride</em> (KACC 43393) inhibited mycelial growth of <em>R. necatrix</em> strains KACC 40445 and KACC 40446 by 76.52 and 74.70%, respectively. Microscopic analysis of mycoparasitism revealed that <em>Trichoderma</em> strains adhered to, coiled around, and lysed <em>R. necatrix</em> mycelia. Finally, greenhouse trials demonstrated that <em>T. harzianum</em> and <em>T. atroviride</em> treatment significantly reduced white root rot incidence, with disease symptoms in only 15% of treated pear saplings, compared with 82% in untreated controls. Collectively, our findings highlight the potential of <em>T. harzianum</em> and <em>T. atroviride</em> as effective biocontrol agents against white root rot caused by <em>R. necatrix</em>, thereby providing sustainable and environmental-friendly disease management strategies in agricultural systems.</div></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"199 ","pages":"Article 105664"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Control","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049964424002299","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

White root rot, caused by the fungal pathogen Dematophora necatrix (syn. Rosellinia necatrix), poses a threat to crops worldwide, leading to substantial economic losses. Biological control using antagonistic fungi, such as Trichoderma spp., has emerged as a promising alternative to chemical fungicides in fungal disease management. In this study, we investigated the potential of three Trichoderma species, Trichoderma harzianum strain 40788 from the Korean Agriculture Culture Collection (KACC), T. atroviride (KACC 43393), and T. asperellum (KACC 43821), as biocontrol agents against four R. necatrix strains (KACC 40446, 40445, 40447, and 40168). Dual-culture assays revealed that T. harzianum (KACC 40788) and T. atroviride (KACC 43393) rapidly inhibited mycelial growth, achieving up to 80% suppression of strains KACC 40445 and KACC 40446, whereas T. asperellum (KACC 43821) exhibited lower inhibition. In volatile antibiotic production assays, volatile metabolites produced by T. harzianum (KACC 40788) and T. atroviride (KACC 43393) inhibited mycelial growth of R. necatrix strains KACC 40445 and KACC 40446 by 76.52 and 74.70%, respectively. Microscopic analysis of mycoparasitism revealed that Trichoderma strains adhered to, coiled around, and lysed R. necatrix mycelia. Finally, greenhouse trials demonstrated that T. harzianum and T. atroviride treatment significantly reduced white root rot incidence, with disease symptoms in only 15% of treated pear saplings, compared with 82% in untreated controls. Collectively, our findings highlight the potential of T. harzianum and T. atroviride as effective biocontrol agents against white root rot caused by R. necatrix, thereby providing sustainable and environmental-friendly disease management strategies in agricultural systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biological Control
Biological Control 生物-昆虫学
CiteScore
7.40
自引率
7.10%
发文量
220
审稿时长
63 days
期刊介绍: Biological control is an environmentally sound and effective means of reducing or mitigating pests and pest effects through the use of natural enemies. The aim of Biological Control is to promote this science and technology through publication of original research articles and reviews of research and theory. The journal devotes a section to reports on biotechnologies dealing with the elucidation and use of genes or gene products for the enhancement of biological control agents. The journal encompasses biological control of viral, microbial, nematode, insect, mite, weed, and vertebrate pests in agriculture, aquatic, forest, natural resource, stored product, and urban environments. Biological control of arthropod pests of human and domestic animals is also included. Ecological, molecular, and biotechnological approaches to the understanding of biological control are welcome.
期刊最新文献
Parasitoids of Agrilus spp. in Europe: Anticipating the arrival of Agrilus planipennis Potential of Trichoderma species to control Rosellinia necatrix, the etiological agent of white root rot The effect of blue and UV light-emitted diodes (LEDs) on the disturbance of the whitefly natural enemies Macrolophus pygmaeus and Encarsia formosa Nutritional ecology of a predatory stink bug: A comparative analysis of nutrient acquisition from two prey species and an artificial diet Non-target risk assessment of Cotesia typhae, a potential biological control agent of the Mediterranean corn borer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1