A rational optimal block hybrid method for enhanced accuracy in solving Lane–Emden equations

Sandile Motsa , Salma Ahmedai , Mpho Nefale , Olumuyiwa Otegbeye
{"title":"A rational optimal block hybrid method for enhanced accuracy in solving Lane–Emden equations","authors":"Sandile Motsa ,&nbsp;Salma Ahmedai ,&nbsp;Mpho Nefale ,&nbsp;Olumuyiwa Otegbeye","doi":"10.1016/j.padiff.2024.101003","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a block hybrid method designed for the effective resolution of Lane–Emden equations, which are characterized as second-order boundary value problems incorporating a singularity at the origin. Utilizing a strategic selection of grid points through the rational approximation of optimal points, this method aims at minimizing local truncation errors, thereby enhancing the precision of solutions. Extensive numerical experimentation reveals that this approach, hereinafter referred to as the Rational Optimal Block Hybrid Method (ROBHM), offers improved accuracy and convergence rates over traditional methods. The analysis underscores the critical role of the rational approximation parameter (denoted as <span><math><mi>d</mi></math></span>) in optimizing both accuracy and computational efficiency. By maintaining a balance between computational demands and the quality of solutions, the Rational Optimal Block Hybrid Method opens new avenues for tackling complex differential equations, thus contributing to the advancement of numerical analysis of boundary value problems marked by singularities.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 101003"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a block hybrid method designed for the effective resolution of Lane–Emden equations, which are characterized as second-order boundary value problems incorporating a singularity at the origin. Utilizing a strategic selection of grid points through the rational approximation of optimal points, this method aims at minimizing local truncation errors, thereby enhancing the precision of solutions. Extensive numerical experimentation reveals that this approach, hereinafter referred to as the Rational Optimal Block Hybrid Method (ROBHM), offers improved accuracy and convergence rates over traditional methods. The analysis underscores the critical role of the rational approximation parameter (denoted as d) in optimizing both accuracy and computational efficiency. By maintaining a balance between computational demands and the quality of solutions, the Rational Optimal Block Hybrid Method opens new avenues for tackling complex differential equations, thus contributing to the advancement of numerical analysis of boundary value problems marked by singularities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
期刊最新文献
Combined buoyancy and Marangoni convective heat transport of CNT-water nanofluid in an open chamber with influence of magnetic field and isothermal solid block Hydromagnetic blood flow through a channel of varying width bounded by porous media of finite thickness Application of the Atangana–Baleanu operator in Caputo sense for numerical solutions of the time-fractional Burgers–Fisher equation using finite difference approaches A rational optimal block hybrid method for enhanced accuracy in solving Lane–Emden equations Multi-parameter-based Box–Behnken design for optimizing energy transfer rate of Darcy–Forchheimer drag and mixed convective nanofluid flow over a permeable vertical surface with activation energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1