Microbial community assembly across agricultural soil mineral mesocosms revealed by 16S rRNA gene amplicon sequencing data

IF 1 Q3 MULTIDISCIPLINARY SCIENCES Data in Brief Pub Date : 2024-12-01 DOI:10.1016/j.dib.2024.111125
Daniel Lee , Fernanda C C Oliveira , Richard T. Conant , Minjae Kim
{"title":"Microbial community assembly across agricultural soil mineral mesocosms revealed by 16S rRNA gene amplicon sequencing data","authors":"Daniel Lee ,&nbsp;Fernanda C C Oliveira ,&nbsp;Richard T. Conant ,&nbsp;Minjae Kim","doi":"10.1016/j.dib.2024.111125","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing atmospheric carbon dioxide (CO<sub>2</sub>) concentrations are impacting the global climate, resulting in significant interest in soil carbon sequestration as a mitigation strategy. While recognized that mineral-associated organic matter (MAOM) in soils is mainly formed through microbial activity, our understanding of microbial-derived MAOM formation processes remains limited due to the complexity of the soil environment. To gain insights into this issue, we incubated fresh soil samples for 45 days with one of three mineral additions: Sand, Kaolinite+Sand, or Illite+Sand. 16S rRNA V3/V4 gene amplicon sequencing was then conducted on samples using an Illumina NextSeq 2000 flow cell. The reads were analyzed and taxonomically assigned with QIIME2 v2023.5.1 and SILVA 138. The dataset has been made publicly available through NCBI GenBank under BioProject ID PRJNA1124235. This dataset is important and useful as it provides valuable insights into the interactions between soil minerals and microbial communities, which can inform strategies for enhancing soil carbon sequestration and mitigating climate change. Moreover, it serves as a crucial reference for future studies, offering a foundational understanding of microbial dynamics in soil systems and guiding further research in microbial ecology and carbon cycling.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"Article 111125"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924010874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing atmospheric carbon dioxide (CO2) concentrations are impacting the global climate, resulting in significant interest in soil carbon sequestration as a mitigation strategy. While recognized that mineral-associated organic matter (MAOM) in soils is mainly formed through microbial activity, our understanding of microbial-derived MAOM formation processes remains limited due to the complexity of the soil environment. To gain insights into this issue, we incubated fresh soil samples for 45 days with one of three mineral additions: Sand, Kaolinite+Sand, or Illite+Sand. 16S rRNA V3/V4 gene amplicon sequencing was then conducted on samples using an Illumina NextSeq 2000 flow cell. The reads were analyzed and taxonomically assigned with QIIME2 v2023.5.1 and SILVA 138. The dataset has been made publicly available through NCBI GenBank under BioProject ID PRJNA1124235. This dataset is important and useful as it provides valuable insights into the interactions between soil minerals and microbial communities, which can inform strategies for enhancing soil carbon sequestration and mitigating climate change. Moreover, it serves as a crucial reference for future studies, offering a foundational understanding of microbial dynamics in soil systems and guiding further research in microbial ecology and carbon cycling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
期刊最新文献
Characterization of the complete mitogenome data of collared peccary, Dicotyles tajacu (Linnaeus, 1758) (Suina: Tayassuidae) from Ucayali, Peru Microbial community assembly across agricultural soil mineral mesocosms revealed by 16S rRNA gene amplicon sequencing data Climate impact dataset of 1233 ingredients to promote sustainability of food service operators in Finland BD-freshwater-fish: An image dataset from Bangladesh for AI-powered automatic fish species classification and detection toward smart aquaculture Interactive plant growth regulator and fertilizer application dataset on growth and yield attributes of tomato (Solanum lycopersicum L.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1