BD-freshwater-fish: An image dataset from Bangladesh for AI-powered automatic fish species classification and detection toward smart aquaculture

IF 1 Q3 MULTIDISCIPLINARY SCIENCES Data in Brief Pub Date : 2024-12-01 DOI:10.1016/j.dib.2024.111132
Pranajit Kumar Das , Md. Abu Kawsar , Puspendu Biswas Paul , Md. Abdullah Al Mamun Hridoy , Md. Sanowar Hossain , Sabyasachi Niloy
{"title":"BD-freshwater-fish: An image dataset from Bangladesh for AI-powered automatic fish species classification and detection toward smart aquaculture","authors":"Pranajit Kumar Das ,&nbsp;Md. Abu Kawsar ,&nbsp;Puspendu Biswas Paul ,&nbsp;Md. Abdullah Al Mamun Hridoy ,&nbsp;Md. Sanowar Hossain ,&nbsp;Sabyasachi Niloy","doi":"10.1016/j.dib.2024.111132","DOIUrl":null,"url":null,"abstract":"<div><div>There are about 33,000 different species of fish and they are visually identified using variety of traits, i.e., size and shape of body, head's size and shape, skin pattern, fin pattern, mouth pattern, scale pattern, and eye pattern etc. In traditional manner, identifying these fish species is always difficult with necked eye. Identification and detection of fish species from images using deep learning and computer vision based techniques is challenging topic among researchers worldwide as an interesting problem. Automatic fish species classification and detection has practical importance for both smart aquaculture and fish industry. AI powered deep learning and computer vision based automatic fish species recognition and sorting system becoming significant factor for making aquaculture industry more productive and sustainable. However, the performance of machine learning classifier greatly depends on the size of image dataset and the quality of the images in the dataset. This article demonstrate <em>BD-Freshwater-Fish</em>, an image dataset contain 4389 images of 12 different species captured in natural environment using HD mobile camera from local fish market of Sylhet and Jessore district of Bangladesh. Twelve (12) different data classes are: Rohu (<em>Labeo rohita</em>), Catla (<em>Catla catla</em>), Mrigal (<em>Cirrhinus cirrhosus</em>), Grass Carp (<em>Ctenopharyngodon idella)</em>, Common Carp (<em>Cyprinus carpio</em>), Mirror Carp (<em>Cyprinus carpio</em> var. specularis), Black Rohu (<em>Labeo calbasu</em>), Silver Carp (<em>Hypophthalmichthys molitrix),</em> Striped Catfish (<em>Pangasius pangasius</em>), Nile Tilapia (<em>Oreochromis niloticus</em>), Long-whiskered Catfish (<em>Sperata aor</em>), Freshwater Shark (<em>Wallago attu</em>) has been included in the dataset with a different number of images of different species. The <em>BD-Freshwater-Fish</em> dataset is hosted by Department of Computer Science and Engineering mutually with the help of the Department of Aquaculture, Sylhet Agricultural University, Sylhet, Bangladesh.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"Article 111132"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924010941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

There are about 33,000 different species of fish and they are visually identified using variety of traits, i.e., size and shape of body, head's size and shape, skin pattern, fin pattern, mouth pattern, scale pattern, and eye pattern etc. In traditional manner, identifying these fish species is always difficult with necked eye. Identification and detection of fish species from images using deep learning and computer vision based techniques is challenging topic among researchers worldwide as an interesting problem. Automatic fish species classification and detection has practical importance for both smart aquaculture and fish industry. AI powered deep learning and computer vision based automatic fish species recognition and sorting system becoming significant factor for making aquaculture industry more productive and sustainable. However, the performance of machine learning classifier greatly depends on the size of image dataset and the quality of the images in the dataset. This article demonstrate BD-Freshwater-Fish, an image dataset contain 4389 images of 12 different species captured in natural environment using HD mobile camera from local fish market of Sylhet and Jessore district of Bangladesh. Twelve (12) different data classes are: Rohu (Labeo rohita), Catla (Catla catla), Mrigal (Cirrhinus cirrhosus), Grass Carp (Ctenopharyngodon idella), Common Carp (Cyprinus carpio), Mirror Carp (Cyprinus carpio var. specularis), Black Rohu (Labeo calbasu), Silver Carp (Hypophthalmichthys molitrix), Striped Catfish (Pangasius pangasius), Nile Tilapia (Oreochromis niloticus), Long-whiskered Catfish (Sperata aor), Freshwater Shark (Wallago attu) has been included in the dataset with a different number of images of different species. The BD-Freshwater-Fish dataset is hosted by Department of Computer Science and Engineering mutually with the help of the Department of Aquaculture, Sylhet Agricultural University, Sylhet, Bangladesh.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
bd -淡水鱼:来自孟加拉国的图像数据集,用于人工智能驱动的鱼类自动分类和智能水产养殖检测
世界上大约有33000种不同的鱼类,它们可以通过各种特征进行视觉识别,比如身体的大小和形状、头部的大小和形状、皮肤的形状、鳍的形状、嘴的形状、鳞片的形状和眼睛的形状等。在传统的方法中,用颈眼识别这些鱼类总是很困难的。利用深度学习和基于计算机视觉的技术从图像中识别和检测鱼类是一个具有挑战性的话题,也是一个有趣的问题。鱼类品种自动分类与检测对智能水产养殖和渔业都具有重要的现实意义。人工智能驱动的深度学习和基于计算机视觉的鱼类自动识别和分类系统成为提高水产养殖业生产力和可持续性的重要因素。然而,机器学习分类器的性能在很大程度上取决于图像数据集的大小和数据集中图像的质量。本文展示了bd - fresh - fish,这是一个图像数据集,包含12个不同物种的4389张图像,使用高清移动相机从孟加拉国Sylhet和Jessore地区的当地鱼市在自然环境中拍摄。十二(12)个不同的数据类是:罗虎(Labeo rohita)、鲶鱼(Catla Catla)、鲫鱼(Cirrhinus)、草鱼(Ctenopharyngodon idella)、鲤鱼(Cyprinus carpio)、镜鲤(Cyprinus carpio var. specularis)、黑罗虎(Labeo calbasu)、鲢鱼(Hypophthalmichthys molitrix)、条纹鲶鱼(Pangasius Pangasius)、尼罗罗非鱼(Oreochromis niloticus)、长须鲶鱼(Sperata aor)、淡水鲨鱼(Wallago attu)已被包含在不同物种的不同数量的图像中。bd -淡水-鱼类数据集由计算机科学与工程系在孟加拉国锡尔赫特农业大学水产养殖系的帮助下共同托管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
期刊最新文献
Maternal health risk factors dataset: Clinical parameters and insights from rural Bangladesh Dataset of vocabulary in Uzbek primary education: Extraction and analysis in case of the school corpus CoAt-Set: Transformed coordinated attack dataset for collaborative intrusion detection simulation Data on hydrodynamic flow and aspiration mechanisms in a patient-specific pharyngolaryngeal model with variable epiglottis angles Dataset and analysis of automated and manual methods to differentiate wide QRS complex tachycardias
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1