Cross-modal attention and geometric contextual aggregation network for 6DoF object pose estimation

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-17 DOI:10.1016/j.neucom.2024.128891
Yi Guo , Fei Wang , Hao Chu , Shiguang Wen
{"title":"Cross-modal attention and geometric contextual aggregation network for 6DoF object pose estimation","authors":"Yi Guo ,&nbsp;Fei Wang ,&nbsp;Hao Chu ,&nbsp;Shiguang Wen","doi":"10.1016/j.neucom.2024.128891","DOIUrl":null,"url":null,"abstract":"<div><div>The availability of affordable RGB-D sensors has made it more suitable to use RGB-D images for accurate 6D pose estimation, which allows for precise 6D parameter prediction using RGB-D images while maintaining a reasonable cost. A crucial research challenge is effectively exploiting adaptive feature extraction and fusion from the appearance information of RGB images and the geometric information of depth images. Moreover, previous methods have neglected the spatial geometric relationships of local position and the properties of point features, which are beneficial for tackling pose estimation in occlusion scenarios. In this work, we propose a cross-attention fusion framework for learning 6D pose estimation from RGB-D images. During the feature extraction stage, we design a geometry-aware context network that encodes local geometric properties of objects in point clouds using dual criteria, distance, and geometric angles. Moreover, we propose a cross-attention framework that combines spatial and channel attention in a cross-modal attention manner. This innovative framework enables us to capture the correlation and importance between RGB and depth features, resulting in improved accuracy in pose estimation, particularly in complex scenes. In the experimental results, we demonstrated that the proposed method outperforms state-of-the-art methods on four challenging benchmark datasets: YCB-Video, LineMOD, Occlusion LineMOD, and MP6D. Video is available at <span><span>https://youtu.be/4mgdbQKaHOc</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"617 ","pages":"Article 128891"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122401662X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The availability of affordable RGB-D sensors has made it more suitable to use RGB-D images for accurate 6D pose estimation, which allows for precise 6D parameter prediction using RGB-D images while maintaining a reasonable cost. A crucial research challenge is effectively exploiting adaptive feature extraction and fusion from the appearance information of RGB images and the geometric information of depth images. Moreover, previous methods have neglected the spatial geometric relationships of local position and the properties of point features, which are beneficial for tackling pose estimation in occlusion scenarios. In this work, we propose a cross-attention fusion framework for learning 6D pose estimation from RGB-D images. During the feature extraction stage, we design a geometry-aware context network that encodes local geometric properties of objects in point clouds using dual criteria, distance, and geometric angles. Moreover, we propose a cross-attention framework that combines spatial and channel attention in a cross-modal attention manner. This innovative framework enables us to capture the correlation and importance between RGB and depth features, resulting in improved accuracy in pose estimation, particularly in complex scenes. In the experimental results, we demonstrated that the proposed method outperforms state-of-the-art methods on four challenging benchmark datasets: YCB-Video, LineMOD, Occlusion LineMOD, and MP6D. Video is available at https://youtu.be/4mgdbQKaHOc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
6DoF目标姿态估计的跨模态关注和几何上下文聚合网络
经济实惠的RGB-D传感器的可用性使得它更适合使用RGB-D图像进行准确的6D姿态估计,这允许使用RGB-D图像进行精确的6D参数预测,同时保持合理的成本。如何有效地利用RGB图像的外观信息和深度图像的几何信息进行自适应特征提取和融合,是一个重要的研究挑战。此外,以前的方法忽略了局部位置的空间几何关系和点特征的性质,这有利于解决遮挡场景下的姿态估计问题。在这项工作中,我们提出了一个跨注意力融合框架,用于从RGB-D图像中学习6D姿态估计。在特征提取阶段,我们设计了一个几何感知上下文网络,该网络使用双标准、距离和几何角度编码点云中物体的局部几何属性。此外,我们提出了一个交叉注意框架,以跨模态的方式将空间注意和通道注意结合起来。这个创新的框架使我们能够捕捉RGB和深度特征之间的相关性和重要性,从而提高姿态估计的准确性,特别是在复杂的场景中。在实验结果中,我们证明了所提出的方法在四个具有挑战性的基准数据集上优于最先进的方法:YCB-Video, LineMOD, Occlusion LineMOD和MP6D。视频可在https://youtu.be/4mgdbQKaHOc上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Editorial Board Editorial Board A novel method for consumer preference extraction based on perceived usefulness and de-neutral sentiment Neuroadaptive control achieving zero-error tracking and designated performance—A novel vanishing damping approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1