Deep echo state network with projection-encoding for multi-step time series prediction

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-22 DOI:10.1016/j.neucom.2024.128939
Tao Li , Zhijun Guo , Qian Li
{"title":"Deep echo state network with projection-encoding for multi-step time series prediction","authors":"Tao Li ,&nbsp;Zhijun Guo ,&nbsp;Qian Li","doi":"10.1016/j.neucom.2024.128939","DOIUrl":null,"url":null,"abstract":"<div><div>To fully utilize the advantage of reservoir computing in deep network modeling, a deep echo state network with projection-encoding (DEESN) is newly proposed for multi-step time series prediction in this paper. DEESN integrates multiple echo state network (ESN) modules and extreme learning machine (ELM) encoders in series arrays. Firstly, the <span><math><mi>k</mi></math></span>th ESN in DEESN learner is responsible for <span><math><mi>k</mi></math></span>th step ahead prediction. The forecast output and encoded reservoir states of the previous ESN module are concatenated with the input variable to form the new input signals for the next adjacent module. Therefore, the temporal dependency among future time steps can be learned, which contributes the performance improvement. Secondly, the ELM encoder is used to optimize the reservoir states for time consumption reduction. Finally, the effectiveness of DEESN is evaluated in artificial chaos benchmarks and real-world applications. Experimental results on six different datasets and comparative models demonstrate that the proposed DEESN has excellent accuracy and robust generalization for multi-step time series prediction.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"617 ","pages":"Article 128939"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224017107","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To fully utilize the advantage of reservoir computing in deep network modeling, a deep echo state network with projection-encoding (DEESN) is newly proposed for multi-step time series prediction in this paper. DEESN integrates multiple echo state network (ESN) modules and extreme learning machine (ELM) encoders in series arrays. Firstly, the kth ESN in DEESN learner is responsible for kth step ahead prediction. The forecast output and encoded reservoir states of the previous ESN module are concatenated with the input variable to form the new input signals for the next adjacent module. Therefore, the temporal dependency among future time steps can be learned, which contributes the performance improvement. Secondly, the ELM encoder is used to optimize the reservoir states for time consumption reduction. Finally, the effectiveness of DEESN is evaluated in artificial chaos benchmarks and real-world applications. Experimental results on six different datasets and comparative models demonstrate that the proposed DEESN has excellent accuracy and robust generalization for multi-step time series prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于投影编码的深度回波状态网络多步时间序列预测
为了充分利用油藏计算在深度网络建模中的优势,本文提出了一种基于投影编码的深度回声状态网络(DEESN),用于多步时间序列预测。DEESN将多个回声状态网络(ESN)模块和ELM (extreme learning machine)编码器串联在一起。首先,DEESN学习器中的第k个ESN负责提前第k步预测。将前一个ESN模块的预测输出和编码后的储层状态与输入变量连接起来,形成下一个相邻模块的新输入信号。因此,可以学习到未来时间步之间的时间依赖性,从而有助于提高性能。其次,利用ELM编码器对储层状态进行优化,减少时间消耗。最后,在人工混沌基准和实际应用中评估了DEESN的有效性。在6个不同数据集和模型上的实验结果表明,该方法对多步时间序列预测具有良好的精度和鲁棒泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Monocular thermal SLAM with neural radiance fields for 3D scene reconstruction Learning a more compact representation for low-rank tensor completion An HVS-derived network for assessing the quality of camouflaged targets with feature fusion Global Span Semantic Dependency Awareness and Filtering Network for nested named entity recognition A user behavior-aware multi-task learning model for enhanced short video recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1