Multivariate image analysis for assessment of textural attributes in transglutaminase-reconstituted meat

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS Chemometrics and Intelligent Laboratory Systems Pub Date : 2024-11-26 DOI:10.1016/j.chemolab.2024.105280
Samuel Verdú , Ignacio García , Carlos Roda , José M. Barat , Raúl Grau , Alberto Ferrer , J.M. Prats-Montalbán
{"title":"Multivariate image analysis for assessment of textural attributes in transglutaminase-reconstituted meat","authors":"Samuel Verdú ,&nbsp;Ignacio García ,&nbsp;Carlos Roda ,&nbsp;José M. Barat ,&nbsp;Raúl Grau ,&nbsp;Alberto Ferrer ,&nbsp;J.M. Prats-Montalbán","doi":"10.1016/j.chemolab.2024.105280","DOIUrl":null,"url":null,"abstract":"<div><div>The control of sensorial textural attributes has high interest to the meat industry focused on the recovery of the value of meat by-products by developing reconstituted meat pieces with added sensory and nutritional values. Sensorial analysis of foods is still a quite subjective methodology, highly dependent of a well-trained team of inspectors, which is simulated by textural analysis in order to measure objective physical properties. This work presents a non-destructive and contactless experimental methodology to predict the physical properties of a reconstituted meat product, based on integrating multispectral imaging and multivariate image analysis (MIA). The experiment was based on reconstituting grounded meat with different concentrations of transglutaminase (0.1, 1, 3, 6 and 10 %), from which textural properties and multispectral imaging data were measured. Multispectral images (UV, VIS and NIR wavelengths) were processed with chemometric procedures to obtain the distribution maps and score images, from which different blocks of features were extracted to generate feature vectors (basic statistics and co-occurrence matrix) for each image. The obtained regression models built with these features predicted all physical properties of the meat with Q<sup>2</sup> &gt; 0.90, after feature selection using VIPs. These results evidenced the capacity of multispectral imaging, combined with chemometric procedures, to capture the variability of physical properties induced by transglutaminase in a derivate meat product. It could represent the base of a potential contactless application for a meat industrial inspection, where work environments have strong hygienic requirements.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"256 ","pages":"Article 105280"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016974392400220X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The control of sensorial textural attributes has high interest to the meat industry focused on the recovery of the value of meat by-products by developing reconstituted meat pieces with added sensory and nutritional values. Sensorial analysis of foods is still a quite subjective methodology, highly dependent of a well-trained team of inspectors, which is simulated by textural analysis in order to measure objective physical properties. This work presents a non-destructive and contactless experimental methodology to predict the physical properties of a reconstituted meat product, based on integrating multispectral imaging and multivariate image analysis (MIA). The experiment was based on reconstituting grounded meat with different concentrations of transglutaminase (0.1, 1, 3, 6 and 10 %), from which textural properties and multispectral imaging data were measured. Multispectral images (UV, VIS and NIR wavelengths) were processed with chemometric procedures to obtain the distribution maps and score images, from which different blocks of features were extracted to generate feature vectors (basic statistics and co-occurrence matrix) for each image. The obtained regression models built with these features predicted all physical properties of the meat with Q2 > 0.90, after feature selection using VIPs. These results evidenced the capacity of multispectral imaging, combined with chemometric procedures, to capture the variability of physical properties induced by transglutaminase in a derivate meat product. It could represent the base of a potential contactless application for a meat industrial inspection, where work environments have strong hygienic requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
期刊最新文献
Editorial Board Multivariate image analysis for assessment of textural attributes in transglutaminase-reconstituted meat Robust adaptive control for nonlinear discrete-time systems based on DE-GMAW Enhanced satellite image resolution with a residual network and correlation filter GATNM: Graph with Attention Neural Network Model for Mycobacterial Cell Wall Permeability of Drugs and Drug-like Compounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1