Shi Song , Sören Ehlers , Franz von Bock und Polach , Moritz Braun
{"title":"Ultra-low cycle fatigue of ship hull structure – an alternately-cyclically loaded four-point bending test of a large box girder","authors":"Shi Song , Sören Ehlers , Franz von Bock und Polach , Moritz Braun","doi":"10.1016/j.marstruc.2024.103732","DOIUrl":null,"url":null,"abstract":"<div><div>Ultra-low cycle fatigue (ULCF) refers to material failure at small number of loading cycles. For large complex structures like ships, the damage from ULCF can bring hazardous consequences. In this study, an alternately-cyclically loaded four-point bending test of a large box girder is introduced as the specimen to represent the ULCF of ship hull structure. In every load during the test, large deformation is applied to the specimen even after reaching its ultimate hull girder strength (UHGS), thus extensive plastic deformation and obvious fracture can occur in the specimen. The severely damaged specimen is further tested until 1.5 cycles of bending are finished, thus the test of post-damage box girder is realized. Moreover, the box girder is divided into 3 sub-sections, which show different but still interacting structural behavior. The result of the test shows the structural behavior of a large complex structure suffering severe damage during alternate hogging and sagging after reaching its UHGS, which corresponds to the consequence of ULCF. The presented ULCF test also provides experiences for investigations of large complex structures with existing damages or after accidental loads. Considering the number of cycles in the test, this study can bridge the gap between monotonic overload and ultra-low cycle fatigue.</div></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"100 ","pages":"Article 103732"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833924001606","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Ultra-low cycle fatigue (ULCF) refers to material failure at small number of loading cycles. For large complex structures like ships, the damage from ULCF can bring hazardous consequences. In this study, an alternately-cyclically loaded four-point bending test of a large box girder is introduced as the specimen to represent the ULCF of ship hull structure. In every load during the test, large deformation is applied to the specimen even after reaching its ultimate hull girder strength (UHGS), thus extensive plastic deformation and obvious fracture can occur in the specimen. The severely damaged specimen is further tested until 1.5 cycles of bending are finished, thus the test of post-damage box girder is realized. Moreover, the box girder is divided into 3 sub-sections, which show different but still interacting structural behavior. The result of the test shows the structural behavior of a large complex structure suffering severe damage during alternate hogging and sagging after reaching its UHGS, which corresponds to the consequence of ULCF. The presented ULCF test also provides experiences for investigations of large complex structures with existing damages or after accidental loads. Considering the number of cycles in the test, this study can bridge the gap between monotonic overload and ultra-low cycle fatigue.
期刊介绍:
This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.