Tom Marchant , Joseph Wood , Kathryn Banfill , Alan McWilliam , Gareth Price , Corinne Faivre-Finn
{"title":"Dosimetric impact of sparing base of heart on organ at risk doses during lung radiotherapy","authors":"Tom Marchant , Joseph Wood , Kathryn Banfill , Alan McWilliam , Gareth Price , Corinne Faivre-Finn","doi":"10.1016/j.radonc.2024.110654","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Minimising heart exposure during lung radiotherapy (RT) is important due to association between increased cardiac dose and adverse outcomes such as cardiac toxicity and reduced overall survival. This study evaluated the impact of incorporating a cardiac avoidance area (CAA) located at the base of the heart on the dose received by cardiac subregions and thoracic organs at risk.</div></div><div><h3>Methods</h3><div>A comparative analysis was conducted on patients treated with lung RT at a single centre before and after the CAA was introduced as an anatomical region at risk (ARR) in April 2023. Two patient cohorts were analysed: those treated prior to CAA implementation (April 2021-March 2023, 923 patients) and those treated post implementation (April 2023-March 2024, 477 patients). For the second group, plans were optimised to keep CAA maximum dose to 1 cc below 19.5 <!--> <!-->Gy in 20 fractions (or equivalent biologically effective dose). Key dose metrics for the CAA, heart, lungs, oesophagus, and spinal canal were compared between the cohorts.</div></div><div><h3>Results</h3><div>The introduction of the CAA as an ARR resulted in significant reductions in CAA and overall heart dose, with median CAA maximum dose (EQD2) decreasing from 32.0 <!--> <!-->Gy<sub>3</sub> to 16.9 <!--> <!-->Gy<sub>3</sub> (p < 0.001). No significant increases in dose were observed for other thoracic organs at risk.</div></div><div><h3>Conclusions</h3><div>Implementing a cardiac avoidance area in lung RT planning significantly reduces doses to critical heart regions without compromising the safety of other organs. This approach holds promise for reducing cardiac-related adverse events and improving overall survival in patients with lung cancer undergoing RT.</div></div>","PeriodicalId":21041,"journal":{"name":"Radiotherapy and Oncology","volume":"202 ","pages":"Article 110654"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiotherapy and Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167814024043160","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Minimising heart exposure during lung radiotherapy (RT) is important due to association between increased cardiac dose and adverse outcomes such as cardiac toxicity and reduced overall survival. This study evaluated the impact of incorporating a cardiac avoidance area (CAA) located at the base of the heart on the dose received by cardiac subregions and thoracic organs at risk.
Methods
A comparative analysis was conducted on patients treated with lung RT at a single centre before and after the CAA was introduced as an anatomical region at risk (ARR) in April 2023. Two patient cohorts were analysed: those treated prior to CAA implementation (April 2021-March 2023, 923 patients) and those treated post implementation (April 2023-March 2024, 477 patients). For the second group, plans were optimised to keep CAA maximum dose to 1 cc below 19.5 Gy in 20 fractions (or equivalent biologically effective dose). Key dose metrics for the CAA, heart, lungs, oesophagus, and spinal canal were compared between the cohorts.
Results
The introduction of the CAA as an ARR resulted in significant reductions in CAA and overall heart dose, with median CAA maximum dose (EQD2) decreasing from 32.0 Gy3 to 16.9 Gy3 (p < 0.001). No significant increases in dose were observed for other thoracic organs at risk.
Conclusions
Implementing a cardiac avoidance area in lung RT planning significantly reduces doses to critical heart regions without compromising the safety of other organs. This approach holds promise for reducing cardiac-related adverse events and improving overall survival in patients with lung cancer undergoing RT.
期刊介绍:
Radiotherapy and Oncology publishes papers describing original research as well as review articles. It covers areas of interest relating to radiation oncology. This includes: clinical radiotherapy, combined modality treatment, translational studies, epidemiological outcomes, imaging, dosimetry, and radiation therapy planning, experimental work in radiobiology, chemobiology, hyperthermia and tumour biology, as well as data science in radiation oncology and physics aspects relevant to oncology.Papers on more general aspects of interest to the radiation oncologist including chemotherapy, surgery and immunology are also published.