{"title":"Portfolio optimisation: Bridging the gap between theory and practice","authors":"Cristiano Arbex Valle","doi":"10.1016/j.cor.2024.106918","DOIUrl":null,"url":null,"abstract":"<div><div>Portfolio optimisation is essential in quantitative investing, but its implementation faces several practical difficulties. One particular challenge is converting optimal portfolio weights into real-life trades in the presence of realistic features, such as transaction costs and integral lots. This is especially important in automated trading, where the entire process happens without human intervention.</div><div>Several works in literature have extended portfolio optimisation models to account for these features. In this paper, we highlight and illustrate difficulties faced when employing the existing literature in a practical setting, such as computational intractability, numerical imprecision and modelling trade-offs. We then propose a two-stage framework as an alternative approach to address this issue. Its goal is to optimise portfolio weights in the first stage and to generate realistic trades in the second. Through extensive computational experiments, we show that our approach not only mitigates the difficulties discussed above but also can be successfully employed in a realistic scenario.</div><div>By splitting the problem in two, we are able to incorporate new features without adding too much complexity to any single model. With this in mind we model two novel features that are critical to many investment strategies: first, we integrate two classes of assets, futures contracts and equities, into a single framework, with an example illustrating how this can help portfolio managers in enhancing investment strategies. Second, we account for borrowing costs in short positions, which have so far been neglected in literature but which significantly impact profits in long/short strategies. Even with these new features, our two-stage approach still effectively converts optimal portfolios into actionable trades.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"175 ","pages":"Article 106918"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054824003903","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Portfolio optimisation is essential in quantitative investing, but its implementation faces several practical difficulties. One particular challenge is converting optimal portfolio weights into real-life trades in the presence of realistic features, such as transaction costs and integral lots. This is especially important in automated trading, where the entire process happens without human intervention.
Several works in literature have extended portfolio optimisation models to account for these features. In this paper, we highlight and illustrate difficulties faced when employing the existing literature in a practical setting, such as computational intractability, numerical imprecision and modelling trade-offs. We then propose a two-stage framework as an alternative approach to address this issue. Its goal is to optimise portfolio weights in the first stage and to generate realistic trades in the second. Through extensive computational experiments, we show that our approach not only mitigates the difficulties discussed above but also can be successfully employed in a realistic scenario.
By splitting the problem in two, we are able to incorporate new features without adding too much complexity to any single model. With this in mind we model two novel features that are critical to many investment strategies: first, we integrate two classes of assets, futures contracts and equities, into a single framework, with an example illustrating how this can help portfolio managers in enhancing investment strategies. Second, we account for borrowing costs in short positions, which have so far been neglected in literature but which significantly impact profits in long/short strategies. Even with these new features, our two-stage approach still effectively converts optimal portfolios into actionable trades.
期刊介绍:
Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.