Haonan Song , Junqing Li , Zhaosheng Du , Xin Yu , Ying Xu , Zhixin Zheng , Jiake Li
{"title":"A Q-learning driven multi-objective evolutionary algorithm for worker fatigue dual-resource-constrained distributed hybrid flow shop","authors":"Haonan Song , Junqing Li , Zhaosheng Du , Xin Yu , Ying Xu , Zhixin Zheng , Jiake Li","doi":"10.1016/j.cor.2024.106919","DOIUrl":null,"url":null,"abstract":"<div><div>In practical industrial production, workers are often critical resources in manufacturing systems. However, few studies have considered the level of worker fatigue when assigning resources and arranging tasks, which has a negative impact on productivity. To fill this gap, the distributed hybrid flow shop scheduling problem with dual-resource constraints considering worker fatigue (DHFSPW) is introduced in this study. Due to the complexity and diversity of distributed manufacturing and multi-objective, a Q-learning driven multi-objective evolutionary algorithm (QMOEA) is proposed to optimize both the makespan and total energy consumption of the DHFSPW at the same time. In QMOEA, solutions are represented by a four-dimensional vector, and a decoding heuristic that accounts for real-time worker productivity is proposed. Additionally, three problem-specific initialization heuristics are developed to enhance convergence and diversity capabilities. Moreover, encoding-based crossover, mirror crossover and balanced mutation methods are presented to improve the algorithm’s exploitation capabilities. Furthermore, a Q-learning based local search is employed to explore promising nondominated solutions across different dimensions. Finally, the QMOEA is assessed using a set of randomly generated instances, and a detailed comparison with state-of-the-art algorithms is performed to demonstrate its efficiency and robustness.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"175 ","pages":"Article 106919"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054824003915","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In practical industrial production, workers are often critical resources in manufacturing systems. However, few studies have considered the level of worker fatigue when assigning resources and arranging tasks, which has a negative impact on productivity. To fill this gap, the distributed hybrid flow shop scheduling problem with dual-resource constraints considering worker fatigue (DHFSPW) is introduced in this study. Due to the complexity and diversity of distributed manufacturing and multi-objective, a Q-learning driven multi-objective evolutionary algorithm (QMOEA) is proposed to optimize both the makespan and total energy consumption of the DHFSPW at the same time. In QMOEA, solutions are represented by a four-dimensional vector, and a decoding heuristic that accounts for real-time worker productivity is proposed. Additionally, three problem-specific initialization heuristics are developed to enhance convergence and diversity capabilities. Moreover, encoding-based crossover, mirror crossover and balanced mutation methods are presented to improve the algorithm’s exploitation capabilities. Furthermore, a Q-learning based local search is employed to explore promising nondominated solutions across different dimensions. Finally, the QMOEA is assessed using a set of randomly generated instances, and a detailed comparison with state-of-the-art algorithms is performed to demonstrate its efficiency and robustness.
期刊介绍:
Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.