Tracking autonomic nervous system activity using surface ECG: Personalized, multiparametric evaluation

IF 1.3 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of electrocardiology Pub Date : 2024-11-22 DOI:10.1016/j.jelectrocard.2024.153837
Vladimir Shusterman , Cees A. Swenne , Stacy Hoffman , Patrick J. Strollo , Barry London
{"title":"Tracking autonomic nervous system activity using surface ECG: Personalized, multiparametric evaluation","authors":"Vladimir Shusterman ,&nbsp;Cees A. Swenne ,&nbsp;Stacy Hoffman ,&nbsp;Patrick J. Strollo ,&nbsp;Barry London","doi":"10.1016/j.jelectrocard.2024.153837","DOIUrl":null,"url":null,"abstract":"<div><div>We present a concise review of the background, pitfalls, and potential solutions for the noninvasive evaluation and continuous tracking of cardiac autonomic nervous system activity (ANSA), using surface-ECG-accessible parameters, including heart rate (HR), heart-rate variability (HRV), and cardiac repolarization. These parameters have provided insights into the dynamics of cardiac ANSA in controlled experiments and have proved useful in risk assessment with respect to sudden cardiac death and all-cause mortality in some patient populations, as well as in implantable device programming. Yet attempts to translate these parameters from the laboratory environment to ambulatory settings have been hampered by the presence of multiple uncontrolled factors, including changes in blood pressure, body position, physical activity, and respiration frequency. We show that a single-parameter-based, simplified cardiac ANSA evaluation in an uncontrolled ambulatory setting could be inaccurate, and we discuss several approaches to improve accuracy. Discerning cardiac ANSA effects in uncontrolled ambulatory environments requires tracking multiple physiological processes, preferably using multisensor, multiparametric monitoring and controlling some physiological variables (e.g., respiration frequency); data fusion and machine-learning-based analytics are instrumental for developing more accurate personalized ANSA evaluation.</div></div>","PeriodicalId":15606,"journal":{"name":"Journal of electrocardiology","volume":"88 ","pages":"Article 153837"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electrocardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022073624003078","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a concise review of the background, pitfalls, and potential solutions for the noninvasive evaluation and continuous tracking of cardiac autonomic nervous system activity (ANSA), using surface-ECG-accessible parameters, including heart rate (HR), heart-rate variability (HRV), and cardiac repolarization. These parameters have provided insights into the dynamics of cardiac ANSA in controlled experiments and have proved useful in risk assessment with respect to sudden cardiac death and all-cause mortality in some patient populations, as well as in implantable device programming. Yet attempts to translate these parameters from the laboratory environment to ambulatory settings have been hampered by the presence of multiple uncontrolled factors, including changes in blood pressure, body position, physical activity, and respiration frequency. We show that a single-parameter-based, simplified cardiac ANSA evaluation in an uncontrolled ambulatory setting could be inaccurate, and we discuss several approaches to improve accuracy. Discerning cardiac ANSA effects in uncontrolled ambulatory environments requires tracking multiple physiological processes, preferably using multisensor, multiparametric monitoring and controlling some physiological variables (e.g., respiration frequency); data fusion and machine-learning-based analytics are instrumental for developing more accurate personalized ANSA evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用体表心电图跟踪自主神经系统活动:个性化、多参数评估
我们简要回顾了无创评估和持续跟踪心脏自主神经系统活动(ANSA)的背景、缺陷和潜在解决方案,使用表面心电图可获得的参数,包括心率(HR)、心率变异性(HRV)和心脏复极。这些参数在对照实验中提供了对心脏ANSA动态的见解,并已被证明在某些患者群体中心脏性猝死和全因死亡率的风险评估以及植入式装置规划中有用。然而,由于存在多种不受控制的因素,包括血压、体位、身体活动和呼吸频率的变化,将这些参数从实验室环境转化为门诊环境的尝试受到了阻碍。我们表明,单参数为基础的,简化心脏ANSA评估在不受控制的门诊设置可能是不准确的,我们讨论了几种方法来提高准确性。在不受控制的动态环境中识别心脏ANSA效应需要跟踪多个生理过程,最好使用多传感器,多参数监测和控制一些生理变量(例如,呼吸频率);数据融合和基于机器学习的分析有助于开发更准确的个性化ANSA评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of electrocardiology
Journal of electrocardiology 医学-心血管系统
CiteScore
2.70
自引率
7.70%
发文量
152
审稿时长
38 days
期刊介绍: The Journal of Electrocardiology is devoted exclusively to clinical and experimental studies of the electrical activities of the heart. It seeks to contribute significantly to the accuracy of diagnosis and prognosis and the effective treatment, prevention, or delay of heart disease. Editorial contents include electrocardiography, vectorcardiography, arrhythmias, membrane action potential, cardiac pacing, monitoring defibrillation, instrumentation, drug effects, and computer applications.
期刊最新文献
A dragon in a barn Ventricular preexcitation and narrow QRS tachycardia. What is the diagnosis? Expect the unexpected Challenges in localisation of culprit artery in STEMI A practical review of generative AI in cardiac electrophysiology medical education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1