Long-term distribution and evolution trends of absorption aerosol optical depth with different chemical components in global and typical regions

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Research Pub Date : 2024-11-23 DOI:10.1016/j.atmosres.2024.107819
Hujia Zhao , Ke Gui , Yangfeng Wang , Yaqiang Wang , Hong Wang , Yu Zheng , Lei Li , Xiaofang Jia , Huizheng Che , Xiaoye Zhang
{"title":"Long-term distribution and evolution trends of absorption aerosol optical depth with different chemical components in global and typical regions","authors":"Hujia Zhao ,&nbsp;Ke Gui ,&nbsp;Yangfeng Wang ,&nbsp;Yaqiang Wang ,&nbsp;Hong Wang ,&nbsp;Yu Zheng ,&nbsp;Lei Li ,&nbsp;Xiaofang Jia ,&nbsp;Huizheng Che ,&nbsp;Xiaoye Zhang","doi":"10.1016/j.atmosres.2024.107819","DOIUrl":null,"url":null,"abstract":"<div><div>Different types of atmospheric aerosols have different climatic effects. In this study, MERRA-2 reanalysis data of absorption aerosol optical depth (AAOD) products at 550 nm from 1980 to 2018 were used to analyse the long-term distribution characteristics and evolution trends of the AAOD of different chemical components globally and in 12 typical study areas. We also analysed the seasonal and interannual monthly variations of the different chemical components of AAOD. In the 40-year study period from 1980 to 2018, the maximum value of total AAOD (TAAOD) appears in the southern regions of SD (Sahara Desert), CSA (Central Southern Africa), NC (Northern China), SC (Southern China), and SEA (Southeastern Asia) (&gt; 0.040). The highest value of dust AAOD (DUAAOD) is in SD (0.030–0.040), and the contribution rate reaches 80 %; while in SC, SEA, and AMZ, black carbon AAOD (BCAAOD) contributes 80 %–90 %. The high-value area of DUAAOD in SD-ME-NWC expands in spring, and the dust belt formed in summer results in a larger DUAAOD (&gt; 0.050). The proportion of BCAAOD in autumn and winter is larger in the dust belt, which is another major contributor to AAOD in this region. The monthly distributions of TAAOD in SEA, CSA, NC, and AMZ are mainly affected by biomass combustion, while the DU in ME (Middle East), NWC (Northwestern China), and SD has a greater effect on AAOD, and the TAAOD in NEA (Northeastern Asia), WEU (Western Europe), EUS (Eastern United States), SC, SA (Southern Asia), and other regions is mainly affected by both DU and BC + OC (in which OC refers to organic carbon). The interannual variations of BCAAOD and OCAAOD tend to be flat before 2000, and then show an increasing trend. BCAAOD has the largest relative contribution (at about 60 %), followed by DUAAOD (at about 30 %), and then OCAAOD has the smallest contribution (at less than 10 %). From a global perspective, AAOD shows different increasing trends during 1980–2018, 1980–1992, and 1993–2005, and decreases or even completely reverses during 2006–2018. This paper provides the distribution characteristics and evolutionary trends of different chemical components of AAOD, which can improve scientific understanding of global- and regional-scale aerosols and their climatic effects.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"314 ","pages":"Article 107819"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016980952400601X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Different types of atmospheric aerosols have different climatic effects. In this study, MERRA-2 reanalysis data of absorption aerosol optical depth (AAOD) products at 550 nm from 1980 to 2018 were used to analyse the long-term distribution characteristics and evolution trends of the AAOD of different chemical components globally and in 12 typical study areas. We also analysed the seasonal and interannual monthly variations of the different chemical components of AAOD. In the 40-year study period from 1980 to 2018, the maximum value of total AAOD (TAAOD) appears in the southern regions of SD (Sahara Desert), CSA (Central Southern Africa), NC (Northern China), SC (Southern China), and SEA (Southeastern Asia) (> 0.040). The highest value of dust AAOD (DUAAOD) is in SD (0.030–0.040), and the contribution rate reaches 80 %; while in SC, SEA, and AMZ, black carbon AAOD (BCAAOD) contributes 80 %–90 %. The high-value area of DUAAOD in SD-ME-NWC expands in spring, and the dust belt formed in summer results in a larger DUAAOD (> 0.050). The proportion of BCAAOD in autumn and winter is larger in the dust belt, which is another major contributor to AAOD in this region. The monthly distributions of TAAOD in SEA, CSA, NC, and AMZ are mainly affected by biomass combustion, while the DU in ME (Middle East), NWC (Northwestern China), and SD has a greater effect on AAOD, and the TAAOD in NEA (Northeastern Asia), WEU (Western Europe), EUS (Eastern United States), SC, SA (Southern Asia), and other regions is mainly affected by both DU and BC + OC (in which OC refers to organic carbon). The interannual variations of BCAAOD and OCAAOD tend to be flat before 2000, and then show an increasing trend. BCAAOD has the largest relative contribution (at about 60 %), followed by DUAAOD (at about 30 %), and then OCAAOD has the smallest contribution (at less than 10 %). From a global perspective, AAOD shows different increasing trends during 1980–2018, 1980–1992, and 1993–2005, and decreases or even completely reverses during 2006–2018. This paper provides the distribution characteristics and evolutionary trends of different chemical components of AAOD, which can improve scientific understanding of global- and regional-scale aerosols and their climatic effects.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
期刊最新文献
Spatiotemporal evolution patterns of flood-causing rainstorm events in China from a 3D perspective Multi criteria evaluation of downscaled CMIP6 models in predicting precipitation extremes Why have extreme low-temperature events in northern Asia strengthened since the turn of the 21st century? Understanding equilibrium climate sensitivity changes from CMIP5 to CMIP6: Feedback, AMOC, and precipitation responses Tornadic environments in Mexico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1