Hydroxyurea inhibits proliferation and stimulates apoptosis through inducible nitric oxide synthase in erythroid cells

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Biomedicine & Pharmacotherapy Pub Date : 2024-12-01 DOI:10.1016/j.biopha.2024.117723
Teodora Dragojević , Emilija Živković , Miloš Diklić , Olivera Mitrović Ajtić , Miloš Lazarević , Tijana Subotički , Dragoslava Đikić , Juan F. Santibanez , Dejan Milenković , Jasmina Dimitrić Marković , Constance T. Noguchi , Alan N. Schechter , Vladan P. Čokić , Milica Vukotić
{"title":"Hydroxyurea inhibits proliferation and stimulates apoptosis through inducible nitric oxide synthase in erythroid cells","authors":"Teodora Dragojević ,&nbsp;Emilija Živković ,&nbsp;Miloš Diklić ,&nbsp;Olivera Mitrović Ajtić ,&nbsp;Miloš Lazarević ,&nbsp;Tijana Subotički ,&nbsp;Dragoslava Đikić ,&nbsp;Juan F. Santibanez ,&nbsp;Dejan Milenković ,&nbsp;Jasmina Dimitrić Marković ,&nbsp;Constance T. Noguchi ,&nbsp;Alan N. Schechter ,&nbsp;Vladan P. Čokić ,&nbsp;Milica Vukotić","doi":"10.1016/j.biopha.2024.117723","DOIUrl":null,"url":null,"abstract":"<div><div>Hydroxyurea (hydroxycarbamide, HU) arrests cells in the S-phase by inhibiting ribonucleotide reductase and DNA synthesis, significantly contributing to the release of nitric oxide (NO). We investigated the involvement of inducible NO synthase (NOS2) in the cytostatic effect of HU using <em>in vitro</em> shRNA-induced knockdown of the NOS2 transcript (NOS2<sub>kd</sub>) or a specific NOS2 inhibitor (1400W) in human erythroleukemic HEL92.1.7 cells, as well as murine erythroid progenitors (mERPs) from HU-treated wild-type (WT) and Nos2 knockout (Nos2<sup>–/–</sup>) mice. Over the long-term, HU increased NOS2 expression in HEL92.1.7 cells (via nuclear factor kappa B [NFκB] signaling) and in mERP. In the short-term, HU increased the activity of human recombinant and erythroleukemic cell-derived NOS2, as confirmed by NO metabolite nitrite/citrulline production. <em>In silico</em> molecular docking predicted that HU binds to the NOS2 active site and substrate L-arginine via hydrogen bonds. Molecular dynamics simulations showed reduced rigidity of the NOS2 active site upon interaction with HU, indicating stabilization of the enzyme-substrate complex. Both 1400W and NOS2<sub>kd</sub> prevented the <em>in vitro</em> reduction in proliferation and induction of apoptosis in HEL92.1.7 cells by HU. NOS2<sub>kd</sub> preferentially blocked early apoptosis and HU-induced S-phase arrest in HEL92.1.7 cells. The HU-induced decrease in proliferation and stimulation of early apoptosis in mERP were prevented in Nos2<sup>–/–</sup> mice and by 1400W in WT mice. This study demonstrated that HU induces NOS2 activity through direct interaction and increased protein expression via NFκB signaling. Moreover, NOS2 mediates the HU-induced inhibition of proliferation and stimulation of apoptosis in erythroid cells.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"181 ","pages":"Article 117723"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332224016093","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydroxyurea (hydroxycarbamide, HU) arrests cells in the S-phase by inhibiting ribonucleotide reductase and DNA synthesis, significantly contributing to the release of nitric oxide (NO). We investigated the involvement of inducible NO synthase (NOS2) in the cytostatic effect of HU using in vitro shRNA-induced knockdown of the NOS2 transcript (NOS2kd) or a specific NOS2 inhibitor (1400W) in human erythroleukemic HEL92.1.7 cells, as well as murine erythroid progenitors (mERPs) from HU-treated wild-type (WT) and Nos2 knockout (Nos2–/–) mice. Over the long-term, HU increased NOS2 expression in HEL92.1.7 cells (via nuclear factor kappa B [NFκB] signaling) and in mERP. In the short-term, HU increased the activity of human recombinant and erythroleukemic cell-derived NOS2, as confirmed by NO metabolite nitrite/citrulline production. In silico molecular docking predicted that HU binds to the NOS2 active site and substrate L-arginine via hydrogen bonds. Molecular dynamics simulations showed reduced rigidity of the NOS2 active site upon interaction with HU, indicating stabilization of the enzyme-substrate complex. Both 1400W and NOS2kd prevented the in vitro reduction in proliferation and induction of apoptosis in HEL92.1.7 cells by HU. NOS2kd preferentially blocked early apoptosis and HU-induced S-phase arrest in HEL92.1.7 cells. The HU-induced decrease in proliferation and stimulation of early apoptosis in mERP were prevented in Nos2–/– mice and by 1400W in WT mice. This study demonstrated that HU induces NOS2 activity through direct interaction and increased protein expression via NFκB signaling. Moreover, NOS2 mediates the HU-induced inhibition of proliferation and stimulation of apoptosis in erythroid cells.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.90
自引率
2.70%
发文量
1621
审稿时长
48 days
期刊介绍: Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.
期刊最新文献
Liquid biopsy in lung cancer: The role of circulating tumor cells in diagnosis, treatment, and prognosis Decoding tumor microenvironment: EMT modulation in breast cancer metastasis and therapeutic resistance, and implications of novel immune checkpoint blockers Nanotherapeutic strategy against glioblastoma using enzyme inhibitors Tissue damage alleviation and mucin inhibition by P5 in a respiratory infection mouse model with multidrug-resistant Acinetobacter baumannii Hydroxyurea inhibits proliferation and stimulates apoptosis through inducible nitric oxide synthase in erythroid cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1