Snow Interacts With Defoliation Height to Drive Grassland Sustainability via Grass Biomass Maintenance

IF 2.4 3区 环境科学与生态学 Q2 ECOLOGY Rangeland Ecology & Management Pub Date : 2024-10-28 DOI:10.1016/j.rama.2024.09.003
Hengkang Xu , Nan Liu , Gaowen Yang , Hao Zhang , Warwick B. Badgery , Yingjun Zhang
{"title":"Snow Interacts With Defoliation Height to Drive Grassland Sustainability via Grass Biomass Maintenance","authors":"Hengkang Xu ,&nbsp;Nan Liu ,&nbsp;Gaowen Yang ,&nbsp;Hao Zhang ,&nbsp;Warwick B. Badgery ,&nbsp;Yingjun Zhang","doi":"10.1016/j.rama.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>Snow amounts and duration are susceptible to climate change and may significantly affect plant diversity and biomass in grassland ecosystems. Yet, the combined effects of grassland use (type and intensity) and snow depth on plant diversity and productivity remain poorly understood. We established two complementary field experiments to explore the mechanisms driving the effects of grassland use (type and intensity) and snow manipulation on plant diversity and productivity in the meadow steppe. An experiment on grassland use type and snow manipulation showed that lower snow cover in winter reduced soil moisture in the snowmelt period, significantly increased the abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria, and initiated nitrification earlier, resulting in the loss of soil available nitrogen, and then reduced the aboveground biomass of early grasses. An experiment on grassland mowing intensity and snow manipulation showed that moderate mowing intensity can restrain the loss of grass biomass and soil nutrients and maintain grassland sustainability in winters with less snow. Stochasticity has played a more important role in plant community assembly in higher intensity of grassland use. Based on our results, we recommend that optimal defoliation height can restrain the loss of grass biomass and soil nutrients and maintain grassland sustainability in winters with less snow. This study has potential benefits for optimizing sustainable production and maintaining ecosystem function under winter snowfall changes in the future across large regions of arid and semiarid grasslands.</div></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":"98 ","pages":"Pages 332-343"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rangeland Ecology & Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1550742424001684","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Snow amounts and duration are susceptible to climate change and may significantly affect plant diversity and biomass in grassland ecosystems. Yet, the combined effects of grassland use (type and intensity) and snow depth on plant diversity and productivity remain poorly understood. We established two complementary field experiments to explore the mechanisms driving the effects of grassland use (type and intensity) and snow manipulation on plant diversity and productivity in the meadow steppe. An experiment on grassland use type and snow manipulation showed that lower snow cover in winter reduced soil moisture in the snowmelt period, significantly increased the abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria, and initiated nitrification earlier, resulting in the loss of soil available nitrogen, and then reduced the aboveground biomass of early grasses. An experiment on grassland mowing intensity and snow manipulation showed that moderate mowing intensity can restrain the loss of grass biomass and soil nutrients and maintain grassland sustainability in winters with less snow. Stochasticity has played a more important role in plant community assembly in higher intensity of grassland use. Based on our results, we recommend that optimal defoliation height can restrain the loss of grass biomass and soil nutrients and maintain grassland sustainability in winters with less snow. This study has potential benefits for optimizing sustainable production and maintaining ecosystem function under winter snowfall changes in the future across large regions of arid and semiarid grasslands.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Rangeland Ecology & Management
Rangeland Ecology & Management 农林科学-环境科学
CiteScore
4.60
自引率
13.00%
发文量
87
审稿时长
12-24 weeks
期刊介绍: Rangeland Ecology & Management publishes all topics-including ecology, management, socioeconomic and policy-pertaining to global rangelands. The journal''s mission is to inform academics, ecosystem managers and policy makers of science-based information to promote sound rangeland stewardship. Author submissions are published in five manuscript categories: original research papers, high-profile forum topics, concept syntheses, as well as research and technical notes. Rangelands represent approximately 50% of the Earth''s land area and provision multiple ecosystem services for large human populations. This expansive and diverse land area functions as coupled human-ecological systems. Knowledge of both social and biophysical system components and their interactions represent the foundation for informed rangeland stewardship. Rangeland Ecology & Management uniquely integrates information from multiple system components to address current and pending challenges confronting global rangelands.
期刊最新文献
Roles of Maasai Alalili Systems in Sustainable Conservation of Fodder Species of East African Rangelands Changes in Plant Composition Following Disturbance in Restored Native Early Successional Communities Impact of Eastern Redcedar (Juniperus virginiana L.) Canopy Diameter and Stand Canopy Cover on Aboveground Biomass and Composition in the Northern Great Plains Mixed-Grass Prairie Trends in the Outcomes, Practice, and Law of Low-Tech Process-Based Restoration in Western Rangelands Prioritizing Accuracy or Efficiency: Comparing General Allometric Models for Perennial Bunchgrass Species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1