Experimental optimization for synthesis of cerium-doped titanium dioxide nanoparticles by modified sol-gel process

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES MethodsX Pub Date : 2024-12-01 DOI:10.1016/j.mex.2024.103071
Mousab Salaheldeen Mirghani
{"title":"Experimental optimization for synthesis of cerium-doped titanium dioxide nanoparticles by modified sol-gel process","authors":"Mousab Salaheldeen Mirghani","doi":"10.1016/j.mex.2024.103071","DOIUrl":null,"url":null,"abstract":"<div><div>A systematic experimental optimization procedure was developed for the synthesis of cerium-doped titanium dioxide nanoparticles (CeTNPs) based on modified sol-gel process. The nanocomposite was prepared using titanium tetraisopropoxide (TTIP) as a catalyst precursor, while utilizing the non-ionic surfactant Triton X-114 in cyclohexane as a stabilizing agent. The synthesis process was optimized by identifying the main experimental factors that affect the properties of the nanoparticles, primarily the structural phase and particle size. The synthesized samples were characterized by X-ray diffraction (XRD) for phase and size, field emission scanning electron microscope (FE-SEM) for morphology, particle size analyzer (PSA) for size distribution, and Brunaur, Emmett, and Teller (BET) for surface area and pores characteristics. The photocatalytic activity of the optimized sample was tested for the removal of methyl orange (MO) and lead (II) from aqueous solutions, and the results indicate superior performance as the catalyst uptakes were 14.8 mg/l and 11.4 mg/l for methyl orange and lead (II), respectively.</div><div>The main highlights of the proposed procedure are as follows:<ul><li><span>•</span><span><div>Identification of the key variables impacting the structural and morphological properties.</div></span></li><li><span>•</span><span><div>Establishing the levels of each factor based on experimental findings.</div></span></li><li><span>•</span><span><div>Generation of all possible combinations of factors based on ANOVA, then characterization of the synthesized material from every possible combination.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"13 ","pages":"Article 103071"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016124005223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A systematic experimental optimization procedure was developed for the synthesis of cerium-doped titanium dioxide nanoparticles (CeTNPs) based on modified sol-gel process. The nanocomposite was prepared using titanium tetraisopropoxide (TTIP) as a catalyst precursor, while utilizing the non-ionic surfactant Triton X-114 in cyclohexane as a stabilizing agent. The synthesis process was optimized by identifying the main experimental factors that affect the properties of the nanoparticles, primarily the structural phase and particle size. The synthesized samples were characterized by X-ray diffraction (XRD) for phase and size, field emission scanning electron microscope (FE-SEM) for morphology, particle size analyzer (PSA) for size distribution, and Brunaur, Emmett, and Teller (BET) for surface area and pores characteristics. The photocatalytic activity of the optimized sample was tested for the removal of methyl orange (MO) and lead (II) from aqueous solutions, and the results indicate superior performance as the catalyst uptakes were 14.8 mg/l and 11.4 mg/l for methyl orange and lead (II), respectively.
The main highlights of the proposed procedure are as follows:
  • Identification of the key variables impacting the structural and morphological properties.
  • Establishing the levels of each factor based on experimental findings.
  • Generation of all possible combinations of factors based on ANOVA, then characterization of the synthesized material from every possible combination.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
期刊最新文献
Experimental optimization for synthesis of cerium-doped titanium dioxide nanoparticles by modified sol-gel process Correction methods and applications of ERT in complex terrain A method to enhance privacy preservation in cloud storage through a three-layer scheme for computational intelligence in fog computing Method for measuring the transpiration resistance of fruit and vegetables Deep learning-based classification of alfalfa varieties: A comparative study using a custom leaf image dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1