Advancing machine learning in Industry 4.0: Benchmark framework for rare-event prediction in chemical processes

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-11-15 DOI:10.1016/j.compchemeng.2024.108929
Vikram Sudarshan, Warren D. Seider
{"title":"Advancing machine learning in Industry 4.0: Benchmark framework for rare-event prediction in chemical processes","authors":"Vikram Sudarshan,&nbsp;Warren D. Seider","doi":"10.1016/j.compchemeng.2024.108929","DOIUrl":null,"url":null,"abstract":"<div><div>Previously, using forward-flux sampling (FFS) and machine learning (ML), we developed multivariate alarm systems to counter rare un-postulated abnormal events. Our alarm systems utilized ML-based predictive models to quantify committer probabilities as functions of key process variables (e.g., temperature, concentrations, and the like), with these data obtained in FFS simulations. Herein, we introduce a comprehensive benchmark framework for rare-event prediction, comparing ML algorithms of varying complexity, including Linear Support-Vector Regressor and k-Nearest Neighbors, to more sophisticated algorithms, such as Random Forests, XGBoost, LightGBM, CatBoost, Dense Neural Networks, and TabNet. This evaluation uses comprehensive performance metrics: <em>RMSE,</em> model training, testing, hyperparameter tuning and deployment times, and number and efficiency of alarms. These balance model accuracy, computational efficiency, and alarm-system efficiency, identifying optimal ML strategies for predicting abnormal rare events, enabling operators to obtain safer and more reliable plant operations.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108929"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003478","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Previously, using forward-flux sampling (FFS) and machine learning (ML), we developed multivariate alarm systems to counter rare un-postulated abnormal events. Our alarm systems utilized ML-based predictive models to quantify committer probabilities as functions of key process variables (e.g., temperature, concentrations, and the like), with these data obtained in FFS simulations. Herein, we introduce a comprehensive benchmark framework for rare-event prediction, comparing ML algorithms of varying complexity, including Linear Support-Vector Regressor and k-Nearest Neighbors, to more sophisticated algorithms, such as Random Forests, XGBoost, LightGBM, CatBoost, Dense Neural Networks, and TabNet. This evaluation uses comprehensive performance metrics: RMSE, model training, testing, hyperparameter tuning and deployment times, and number and efficiency of alarms. These balance model accuracy, computational efficiency, and alarm-system efficiency, identifying optimal ML strategies for predicting abnormal rare events, enabling operators to obtain safer and more reliable plant operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在工业4.0中推进机器学习:化学过程中罕见事件预测的基准框架
以前,使用前向通量采样(FFS)和机器学习(ML),我们开发了多变量报警系统来应对罕见的非假设异常事件。我们的报警系统利用基于ml的预测模型,将提交概率量化为关键过程变量(如温度、浓度等)的函数,这些数据是在FFS模拟中获得的。在此,我们引入了一个用于罕见事件预测的综合基准框架,将不同复杂性的ML算法(包括线性支持向量回归和k近邻)与更复杂的算法(如Random Forests, XGBoost, LightGBM, CatBoost, Dense Neural Networks和TabNet)进行比较。此评估使用综合性能度量:RMSE、模型训练、测试、超参数调优和部署时间,以及警报的数量和效率。这些平衡了模型的准确性、计算效率和报警系统的效率,确定了预测异常罕见事件的最佳ML策略,使操作人员能够获得更安全、更可靠的工厂操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Editorial Board ChemBERTa embeddings and ensemble learning for prediction of density and melting point of deep eutectic solvents with hybrid features From automated to autonomous process operations CPU and GPU based acceleration of high-dimensional population balance models via the vectorization and parallelization of multivariate aggregation and breakage integral terms Piecewise linear approximation using J1 compatible triangulations for efficient MILP representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1