Advancing chest X-ray diagnostics: A novel CycleGAN-based preprocessing approach for enhanced lung disease classification in ChestX-Ray14

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer methods and programs in biomedicine Pub Date : 2024-11-25 DOI:10.1016/j.cmpb.2024.108518
Aya Hage Chehade , Nassib Abdallah , Jean-Marie Marion , Mathieu Hatt , Mohamad Oueidat , Pierre Chauvet
{"title":"Advancing chest X-ray diagnostics: A novel CycleGAN-based preprocessing approach for enhanced lung disease classification in ChestX-Ray14","authors":"Aya Hage Chehade ,&nbsp;Nassib Abdallah ,&nbsp;Jean-Marie Marion ,&nbsp;Mathieu Hatt ,&nbsp;Mohamad Oueidat ,&nbsp;Pierre Chauvet","doi":"10.1016/j.cmpb.2024.108518","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective:</h3><div>Chest radiography is a medical imaging technique widely used to diagnose thoracic diseases. However, X-ray images may contain artifacts such as irrelevant objects, medical devices, wires and electrodes that can introduce unnecessary noise, making difficult the distinction of relevant anatomical structures, and hindering accurate diagnoses. We aim in this study to address the issue of these artifacts in order to improve lung diseases classification results.</div></div><div><h3>Methods:</h3><div>In this paper we present a novel preprocessing approach which begins by detecting images that contain artifacts and then we reduce the artifacts’ noise effect by generating sharper images using a CycleGAN model. The DenseNet-121 model, used for the classification, incorporates channel and spatial attention mechanisms to specifically focus on relevant parts of the image. Additional information contained in the dataset, namely clinical characteristics, were also integrated into the model.</div></div><div><h3>Results:</h3><div>We evaluated the performance of the classification model before and after applying our proposed artifact preprocessing approach. These results clearly demonstrate that our preprocessing approach significantly improves the model’s AUC by 5.91% for pneumonia and 6.44% for consolidation classification, outperforming previous studies for the 14 diseases in the ChestX-Ray14 dataset.</div></div><div><h3>Conclusion:</h3><div>This research highlights the importance of considering the presence of artifacts when diagnosing lung diseases from radiographic images. By eliminating unwanted noise, our approach enables models to focus on relevant diagnostic features, thereby improving their performance. The results demonstrated that our approach is promising, highlighting its potential for broader applications in lung disease classification.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"259 ","pages":"Article 108518"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016926072400511X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective:

Chest radiography is a medical imaging technique widely used to diagnose thoracic diseases. However, X-ray images may contain artifacts such as irrelevant objects, medical devices, wires and electrodes that can introduce unnecessary noise, making difficult the distinction of relevant anatomical structures, and hindering accurate diagnoses. We aim in this study to address the issue of these artifacts in order to improve lung diseases classification results.

Methods:

In this paper we present a novel preprocessing approach which begins by detecting images that contain artifacts and then we reduce the artifacts’ noise effect by generating sharper images using a CycleGAN model. The DenseNet-121 model, used for the classification, incorporates channel and spatial attention mechanisms to specifically focus on relevant parts of the image. Additional information contained in the dataset, namely clinical characteristics, were also integrated into the model.

Results:

We evaluated the performance of the classification model before and after applying our proposed artifact preprocessing approach. These results clearly demonstrate that our preprocessing approach significantly improves the model’s AUC by 5.91% for pneumonia and 6.44% for consolidation classification, outperforming previous studies for the 14 diseases in the ChestX-Ray14 dataset.

Conclusion:

This research highlights the importance of considering the presence of artifacts when diagnosing lung diseases from radiographic images. By eliminating unwanted noise, our approach enables models to focus on relevant diagnostic features, thereby improving their performance. The results demonstrated that our approach is promising, highlighting its potential for broader applications in lung disease classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
期刊最新文献
Editorial Board Advancing chest X-ray diagnostics: A novel CycleGAN-based preprocessing approach for enhanced lung disease classification in ChestX-Ray14 EMR-LIP: A lightweight framework for standardizing the preprocessing of longitudinal irregular data in electronic medical records A computational workflow for modeling complex patient-specific coronary stenting cases Investigation of radiomic features on MRI images to identify extraprostatic extension in prostate cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1