Inspecting the structural stability, magneto-opto-electronic, and transport characteristics of half-metallic ferromagnets double perovskite oxide (Sr2MoSbO6): A DFT study

IF 2.1 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Solid State Communications Pub Date : 2024-11-23 DOI:10.1016/j.ssc.2024.115763
Nazia Iram , Dalia Fouad , Ramesh Sharma , Abhinav Kumar
{"title":"Inspecting the structural stability, magneto-opto-electronic, and transport characteristics of half-metallic ferromagnets double perovskite oxide (Sr2MoSbO6): A DFT study","authors":"Nazia Iram ,&nbsp;Dalia Fouad ,&nbsp;Ramesh Sharma ,&nbsp;Abhinav Kumar","doi":"10.1016/j.ssc.2024.115763","DOIUrl":null,"url":null,"abstract":"<div><div>The structural, elastic, mechanical, electronic, thermoelectric, and magnetic properties of the double perovskite Sr<sub>2</sub>MoSbO<sub>6</sub> have investigated in this manuscript using Perdew-Burke-Ernzerhof Generalized Gradient Approximation (PBE-GGA) with an enhanced Trans Blaha modified Becke Johnson potential (TB-mBJ) approach. Through electro-magnetic and elastic exploration, we have determined that this compound is semiconductor, ferromagnetic, and brittle. Strong hybridisation between the Mo and Sr-d orbitals was seen in the Density of states (DOS) results, which, according to their relative quantities, supports the two states' ionic nature. The Mo atoms contribute significantly to the overall magnetic moment, which is 3.0 μB in total. The semiconducting nature of Sr<sub>2</sub>MoSbO<sub>6</sub> is confirmed by the calculation of the overall electronic parameters. Calculations of thermodynamic parameters for temperature ranges of 0–1200 K and pressure ranges of roughly 0–30 GPa show good agreement between theoretical and experimental data. The DFT Boltzmann transport equations have been used to compute thermoelectric properties in relation to temperature and chemical potential. The p-type character of Sr<sub>2</sub>MoSbO<sub>6</sub> is identified by positive values of the Seebeck coefficient. The power factor (PF), Seebeck coefficient (S), figure of merit (ZT), electrical conductivity, and lattice thermal conductivity were also calculated. It was discovered that this perovskite had a merit figure that was almost equal to one, a very high Seebeck coefficient, and strong electrical conductivity—all of which are consistent with its semiconductor nature. These findings suggest a substance with a great deal of promise for thermoelectrical uses. The results are taken into consideration for future experiments and may be future candidates for spintronics applications.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"396 ","pages":"Article 115763"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824003405","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The structural, elastic, mechanical, electronic, thermoelectric, and magnetic properties of the double perovskite Sr2MoSbO6 have investigated in this manuscript using Perdew-Burke-Ernzerhof Generalized Gradient Approximation (PBE-GGA) with an enhanced Trans Blaha modified Becke Johnson potential (TB-mBJ) approach. Through electro-magnetic and elastic exploration, we have determined that this compound is semiconductor, ferromagnetic, and brittle. Strong hybridisation between the Mo and Sr-d orbitals was seen in the Density of states (DOS) results, which, according to their relative quantities, supports the two states' ionic nature. The Mo atoms contribute significantly to the overall magnetic moment, which is 3.0 μB in total. The semiconducting nature of Sr2MoSbO6 is confirmed by the calculation of the overall electronic parameters. Calculations of thermodynamic parameters for temperature ranges of 0–1200 K and pressure ranges of roughly 0–30 GPa show good agreement between theoretical and experimental data. The DFT Boltzmann transport equations have been used to compute thermoelectric properties in relation to temperature and chemical potential. The p-type character of Sr2MoSbO6 is identified by positive values of the Seebeck coefficient. The power factor (PF), Seebeck coefficient (S), figure of merit (ZT), electrical conductivity, and lattice thermal conductivity were also calculated. It was discovered that this perovskite had a merit figure that was almost equal to one, a very high Seebeck coefficient, and strong electrical conductivity—all of which are consistent with its semiconductor nature. These findings suggest a substance with a great deal of promise for thermoelectrical uses. The results are taken into consideration for future experiments and may be future candidates for spintronics applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Communications
Solid State Communications 物理-物理:凝聚态物理
CiteScore
3.40
自引率
4.80%
发文量
287
审稿时长
51 days
期刊介绍: Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged. A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions. The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.
期刊最新文献
The effects of Cobalt doping on the structural, electronic, magnetic, and thermodynamic characteristics of the L10-FeNi alloy: First-principle calculations Effect of Al doping on the magnetic, magneto-structural, and magnetocaloric properties of Ni-Mn-In Heusler alloys Optical response of WSe2-based vertical tunneling junction Inspecting the structural stability, magneto-opto-electronic, and transport characteristics of half-metallic ferromagnets double perovskite oxide (Sr2MoSbO6): A DFT study Improved structural calculations of bulk and monolayer TaX2 (X = S, Se) using DFT-D, and comparison of their electronic and elastic properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1